版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页2024年福建省福州市屏东中学九上数学开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)使代数式有意义的x的取值范围是()A.x≥0 B. C.x取一切实数 D.x≥0且2、(4分)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.03、(4分)下列各式由左到右的变形中,属于因式分解的是()A. B.C. D.4、(4分)若一次函数向上平移2个单位,则平移后得到的一次函数的图象与轴的交点为A. B. C. D.5、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.6、(4分)如果式子有意义,那么x的范围在数轴上表示为()A. B.C. D.7、(4分)如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点,依次作下去,若点的纵坐标是1,则的纵坐标是().A. B. C. D.8、(4分)下列运算中正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,AD是△ABC的角平分线,若AB=8,AC=6,则=_____.10、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.11、(4分)如图,已知直线y1=﹣x与y2=nx+4n图象交点的横坐标是﹣2,则关于x的不等式nx+4n>﹣x>0解集是_____.12、(4分)函数自变量的取值范围是_______________.13、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.(1)当m=时,求证:四边形ABEF是正方形.(2)记四边形ABEF的面积为S,求S关于m的函数关系式.(3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.15、(8分)计算:(1)+﹣(2)2÷5(3)(+3﹣)÷(4)(2﹣3)2﹣(4+3)(4﹣3)16、(8分)某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计,绘制了两幅尚不完整的统计图如图所示,根据统计图中的信息解答下列问题:(1)若组的频数比组小,则频数分布直方图中________,________;(2)扇形统计图中________,并补全频数分布直方图;(3)若成绩在分以上为优秀,全校共有名学生,请估计成绩优秀的学生有多少名?17、(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.18、(10分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m20、(4分)如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.21、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.22、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为______cm.23、(4分)如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.二、解答题(本大题共3个小题,共30分)24、(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.25、(10分)重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.(1)这两种车型在去年车展期间各销售了多少辆?(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.26、(12分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,解得:x≥0且.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2、A【解析】
根据二次根式的被开方数是非负数建立不等式组即可求出x的值,进而求出y值,最后代入即可求出答案.【详解】解:∵y=+2,∴,解得x=1,∴y=2,∴(﹣x)y=(﹣1)2=1.故选A.本题考查了二次根式的性质.牢记二次根式的被开方数是非负数这一条件是解题的关键.3、C【解析】
根据因式分解的定义,直接判断是否是因式分解即可.【详解】解:A.,属于整式乘法,单项式乘多项式,故此选项不符合题意;B.,等式左右两边都有整式加减的形式,故此选项不符合题意;C.,用提公因式法将多项式转化成整式乘法的形式,属于因式分解,故此选项正确;D.,等式左右两边都有整式加减的形式,故此选项不符合题意;故选:C本题主要考查整式的因式分解的意义,熟记因式分解的意义是解决此题的关键,还要注意,必须是整式.4、C【解析】
首先根据平移的性质,求出新的函数解析式,然后即可求出与轴的交点.【详解】解:根据题意,可得平移后的函数解析式为,即为∴与轴的交点,即代入解析式,得∴与轴的交点为故答案为C.此题主要考查根据函数图像的平移特征,求坐标,熟练掌握,即可解题.5、A【解析】
连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、AF=EF无法证明得到OE=OF,故本选项正确.
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
故选:A.本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.6、D【解析】
根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.【详解】由题意得:x﹣1≥0,解得:x≥1,在数轴上表示为:故选D.本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.7、B【解析】
由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.【详解】∵点B1的纵坐标是1,∴A1(,1),B1(,1).∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.故选B.本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.8、B【解析】
根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.【详解】A.不能合并,所以A选项错误;B.原式=,所以B选项正确;C.原式=,所以C选项错误;D.原式=3,所以D选项错误。故选B.此题考查二次根式的混合运算,掌握运算法则是解题关键二、填空题(本大题共5个小题,每小题4分,共20分)9、4:3【解析】作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF,===.故答案为4∶3.点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.10、【解析】
人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。【详解】根据题意可列出此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式11、﹣2<x<1【解析】
观察图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>-x>1解集.【详解】解:观察图象可知:图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>﹣x>1解集,∴﹣2<x<1,故答案为﹣2<x<1.本题考查一次函数与不等式、两直线相交或平行问题等知识,解题的关键是学会利用图象法解决自变量的取值范围问题.12、x>-3【解析】
根据题意得:x+3>0,即x>-3.13、【解析】
由矩形的性质可证明S△DFP=S△PBE,即可求解.【详解】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×5=5,∴S阴=5+5=10,故答案为:10.本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).【解析】
(1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
(2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
(3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.【详解】解:(1)如图1中,∵m=,B(,0),∴D(0,),∴OD=OB=,∴矩形OBCD是正方形,∴BO=BC,∵∠OBC=∠ABE=90°,∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO≌△CBE,∴AB=BE,∵四边形ABEF是平行四边形,∴四边形ABEF是菱形,∵∠ABE=90°,∴四边形ABEF是正方形.(2)如图1中,在Rt△AOB中,∵OA=1,OB=,∴AB==2,∵∠OBC=∠ABE=90°,∴∠OBA=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO∽△CBE,∴,∴,∴BE=m,∴S=AB•BE=m(m>0).(3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.∵tan∠ABO=,∴∠ABO=30°,在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,∴AE=,∵AG=GE,∴AG=,∴G(,1),设F(m,n),则有,,∴m=,n=2,∴F(,2).②如图3中,当点G在BC边上时,作GM⊥AB于M.∵四边形ABEF是矩形,∴GB=GA,∵∠GBO=90°,∠ABO=30°,∴∠ABG=60°,∴△ABG是等边三角形,∴BG=AB=2,∵FG=BG,∴F(,4),综上所述,满足条件的F坐标为(,2)或(,4).本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.15、(1)(2)(3)(4)49-12【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘除法则运算,然后化简后合并即可;(3)原式利用二次根式的除法法则计算即可得到结果;(4)原式利用完全平方公式和平方差公式变形,计算即可得到结果.【详解】(1)+﹣,=,=;(2)2÷5,=,=,=;(3)(+3﹣)÷,=,=,=;(4)(2﹣3)2﹣(4+3)(4﹣3),=,=49-.此题考查了二次根式的运算,熟练掌握运算法则是解本题的关键.16、(1)16,40;(2),见解析;(3)估计成绩优秀的学生有470名.【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总人数:(人)则,(2),组的人数是:(人),补全条形统计图如图(3)样本、两组的百分数的和为,∴(名)答:估计成绩优秀的学生有470名.本题考查的是频数分布直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.17、(1)证明见解析;(1)36m1;(3)P的坐标为(0,-1)或(0,10).【解析】
(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(1)根据四边形ABCD的面积=△ABD的面积+△BCD的面积,代入数据计算即可求解;(3)先根据S△PBD=S四边形ABCD,求出PD,再根据D点的坐标即可求解.【详解】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=11m,CD=13m,∴BD1+BC1=CD1.∴BD⊥CB;(1)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×11×5=6+30=36(m1).故这块土地的面积是36m1;(3)∵S△PBD=S四边形ABCD∴•PD•AB=×36,
∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,-1)或(0,10).本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.18、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行【详解】解:设10min后,OA=30×10=300(m),OB=30×10=300(m),甲乙两人相距AB=(m).故答案为:.本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.20、【解析】
利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.【详解】解:∵,,分别是,,中点∴∵∠FGH=90°∴为直角三角形根据勾股定理得:故答案为:5本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.21、1【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.22、3【解析】∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°.∵AE⊥l,CF⊥l,∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.∵∠ABE+∠ABC+∠FBC=180°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC.在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF=2cm,BF=AE=1cm,∴EF=BE+BF=2+1=3cm.故答案为3.23、3【解析】
根据角平分线上的点到角的两边的距离相等求解即可.【详解】解:∵OC平分∠AOB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电气设备维护与保养服务合同3篇
- 2024年度物流与供应链管理合同
- 2024年度广告发布合同:品牌宣传与推广服务2篇
- 《vr太阳光设定基础》课件
- 2024年度供应链管理系统开发合同5篇
- 2024年度企业资产转让合同(含市场准入)
- 2024年度大连龙门吊安全检测与维修服务合同
- 2024年度旅游服务合同导游安排与责任
- 2024年度文化艺术节组织策划合同2篇
- 2024年度茶山茶叶产业绿色发展合同
- 室外配套工程施工组织设计
- 便携式气体检测仪使用方法(课堂PPT)
- 高中论文从建构理论看高中化学CAI软件的课题选择
- 安全文明施工设施配置清单
- 圆的旋转问题
- 小学生升学择校个人简历模板
- 幼儿园教研主题30篇
- 十三辙《韵辙表》——合辙押韵必备正式版
- 应用随机过程PPT课件
- 初中美术课说课稿(课堂PPT)
- YY∕T 0106-2021 医用诊断X射线机通用技术条件
评论
0/150
提交评论