版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学重要知识总复习归纳高中数学重要知识总复习归纳总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,是时候写一份总结了。则总结要注意有什么内容呢?以下是为大家整理的高中数学重要知识总复习归纳,欢迎阅读与收藏。高考数学一轮复习重点总结第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。第二,平面向量和三角函数重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。第三,数列数列这个板块,重点考两个方面:一个通项;一个是求和。第四,空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。第五,概率和统计这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一xxx等可能的概率,第二xxx事件,第三是独立事件,还有独立重复事件发生的概率。第六,解析几何这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。第七,押轴题考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。高三数学专题复习归纳1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。2、在应用条件时,易A忽略是空集的情况。3、你会用补集的思想解决有关问题吗?4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5、你知道“否命题”与“命题的否定形式”的区别。6、求解与函数有关的问题易忽略定义域优先的原则。7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。9、原函数在区间[—a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法。11、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。12、求函数的值域必须先求函数的定义域。13、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)、这几种基本应用你掌握了吗?14、解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论。15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。19、绝对值不等式的解法及其几何意义是什么?20、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。22、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。23、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0、24、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)28、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。29、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角、异角化同角,异名化同名,高次化低次)33、反正弦、反余弦、反正切函数的取值范围分别是xxx。34、你还记得某些特殊角的三角函数值吗?35、掌握正弦函数、余弦函数及正切函数的图象和性质、你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36、函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右—,上+下—”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4—3,即y=2x+5。(2)方程表示的图形的平移为“左+右—,上—下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)—(y+3)+4=0,即y=2x+5。(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k。37、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38、形如的周期都是,但的周期为。39、正弦定理时易忘比值还等于2R。高三数学重要复习归纳一、函数1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),则f(x)为奇函数;2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),则f(x)为偶函数;3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。二、命题条件一、充分条件和必要条件当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。二、充分条件、必要条件的常用判断法1、定义法:判断B是A的条件,实际上就是判断B=A或者A=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。3、集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:若A?B,则p是q的充分条件。若A?B,则p是q的必要条件。若A=B,则p是q的充要条件。若A?B,且B?A,则p是q的既不充分也不必要条件。三、知识扩展1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。高考数学导数知识点(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义。(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x—x0也在该邻域内)时,相应地函数变化△y=f(x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义。(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。(四)单调性及其应用1、利用导数研究多项式函数单调性的一般步骤(1)求f¢(x)(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2、用导数求多项式函数单调区间的一般步骤(1)求f¢(x)(2)f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)0的解集与定义域的交集的对应区间为减区间高中数学重难点知识点高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。高中数学知识点大全一、集合与简易逻辑1、集合的元素具有确定性、无序性和互异性。2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。6、充要条件二、函数1、指数式、对数式2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。3、单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)4、对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称。推广一:如果函数对于一切,都有成立,则的图像关于直线(由“和的一半确定”)对称。推广二:函数,的图像关于直线对称。(2)函数与函数的图像关于直线(轴)对称。(3)函数与函数的图像关于坐标原点中心对称。三、数列1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系2、等差数列中(1)等差数列公差的取值与等差数列的单调性。(2)也成等差数列。(3)两等差数列对应项和(差)组成的新数列仍成等差数列。(4)仍成等差数列。(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。(7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。3、等比数列中(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。(2)两等比数列对应项积(商)组成的新数列仍成等比数列。(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。(5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。4、等差数列与等比数列的联系(1)如果数列成等差数列,则数列(总有意义)必成等比数列。(2)如果数列成等比数列,则数列必成等差数列。(3)如果数列既成等差数列又成等比数列,则数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。(4)如果两等差数列有公共项,则由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。如果一个等差数列与一个等比数列有公共项顺次组成新数列,则常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。5、数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,则常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的`推导方法之一)。(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,则常选用裂项相消法求和(6)通项转换法。四、三角函数1、终边与终边相同(的终边在终边所在射线上)。终边与终边共线(的终边在终边所在直线上)。终边与终边关于轴对称终边与终边关于轴对称终边与终边关于原点对称一般地:终边与终边关于角的终边对称。与的终边关系由“两等分各象限、一二三四”确定。2、弧长公式:,扇形面积公式:1弧度(1rad)。3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。8、三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。9、三角形中的三角函数:(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。(2)正弦定理:(R为三角形外接圆的半径)。(3)余弦定理:常选用余弦定理鉴定三角形的类型。五、向量1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。3、两非零向量平行(共线)的充要条件4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,则对该平面内的任一向量a,有且只有一对实数,使a=e1+e2。5、三点共线;6、向量的数量积:六、不等式1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。3、常用不等式有:(根据目标不等式左右的运算结构选用)a、b、cR,(当且仅当时,取等号)4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5、含绝对值不等式的性质:6、不等式的恒成立,能成立,恰成立等问题(1)恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(2)能成立问题(3)恰成立问题若不等式在区间上恰成立,则等价于不等式的解集为。若不等式在区间上恰成立,则等价于不等式的解集为,七、直线和圆1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。(1)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。5、圆的方程:最简方程;标准方程;6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆上一点圆的切线方程过圆上一点圆的切线方程过圆上一点圆的切线方程如果点在圆外,则上述直线方程表示过点两切线上两切点的“切点弦”方程。如果点在圆内,则上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。7、曲线与的交点坐标方程组的解;过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。八、圆锥曲线1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),则将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,则将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。(1)注意:①圆锥曲线第一定义与配方法的综合运用;②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式④如果在一条直线上出现“三个或三个以上的点”,则可选择应用“斜率”为桥梁转化。4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。注意:①如果问题中涉及到平面向量知识,则应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。九、直线、平面、简单多面体1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。十、导数1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)2、多项式函数的导数与函数的单调性在一个区间上(个别点取等号)在此区间上为增函数。在一个区间上(个别点取等号)在此区间上为减函数。3、导数与极值、导数与最值:(1)函数处有且“左正右负”在处取极大值;函数在处有且左负右正”在处取极小值。注意:①在处有是函数在处取极值的必要非充分条件。②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。③单调性与最值(极值)的研究要注意列表!(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。高中数学重要知识总复习归纳篇1总体和样本①在统计学中,把研究对象的全体叫做总体。②把每个研究对象叫做个体。③把总体中个体的总数叫做总体容量。④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,我们称它为样本.其中个体的个数称为样本容量。简单随机抽样也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。高二数学学习方法一、提高听课的效率是关键课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。二、做好复习和总结工作做好及时的复习。课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习,然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。三、指导做一定量的练习题做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,则多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。立体几何初步NO.1柱、锥、台、球的结构特征棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。NO.2空间几何体的三视图定义三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。NO.3空间几何体的直观图——斜二测画法斜二测画法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 岩棉防火隔离带施工工艺
- 2024年渭南职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 洗地机行业供需现状与发展战略规划
- 2024年淄博师范高等专科学校高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2017-民族区域自治制度:适合国情基本政治制度
- 2024年浙江长征职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年浙江经济职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 商易通业务基本介绍讲义资料
- 2024年浙江机电职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 4¥-four(天津科技大学)
- 部编新改版语文一年级下册《语文园地四》教学设计
- 2025年北京铁路局集团招聘笔试参考题库含答案解析
- 曙光磁盘阵列DS800-G10售前培训资料V1.0
- 寺庙祈福活动方案(共6篇)
- 2025年病案编码员资格证试题库(含答案)
- 企业财务三年战略规划
- 2025新译林版英语七年级下单词表
- 提高脓毒性休克患者1h集束化措施落实率
- 山东省济南市天桥区2024-2025学年八年级数学上学期期中考试试题
- 煤矸石综合利用途径课件
- 企业信息公示联络员备案申请表
评论
0/150
提交评论