黑龙江省龙东地区2024年中考数学试卷_第1页
黑龙江省龙东地区2024年中考数学试卷_第2页
黑龙江省龙东地区2024年中考数学试卷_第3页
黑龙江省龙东地区2024年中考数学试卷_第4页
黑龙江省龙东地区2024年中考数学试卷_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省龙东地区2024年中考数学试卷阅卷人一、选择题(每小题3分,共30分)得分1.下列计算正确的是()A.a3•a2=a6 B.(a2)5=a7C.(﹣2a3b)3=﹣8a9b3 D.(﹣a+b)(a+b)=a2﹣b22.下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.一个由若干个大小相同的小正方体搭成的几何体,它的主视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少是()A.6 B.5 C.4 D.34.一组数据2,3,3,4,则这组数据的方差为()A.1 B.0.8 C.0.6 D.0.55.关于x的一元二次方程(m﹣2)x2+4x+2=0有两个实数根,则m的取值范围是()A.m≤4 B.m≥4C.m≥﹣4且m≠2 D.m≤4且m≠26.已知关于x的分式方程kxx-3-2=3A.k=2或k=﹣1 B.k=﹣2C.k=2或k=1 D.k=﹣17.国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买).其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案()A.5 B.4 C.3 D.28.如图,双曲线y=12x(x>0)经过A、B两点,连接OA、AB,过点B作BD⊥y轴,垂足为D,BD交OA于点E,且E为AO的中点,则△A.4.5 B.3.5 C.3 D.2.59.如图,菱形ABCD中,点O是BD的中点,AM⊥BC,垂足为M,AM交BD于点N,OM=2,BD=8,则MN的长为()A.5 B.455 C.35510.如图,在正方形ABCD中,点H在AD边上(不与点A、D重合),∠BHF=90°,HF交正方形外角的平分线DF于点F,连接AC交BH于点M,连接BF交AC于点G,交CD于点N,连接BD.则下列结论:①∠HBF=45°;②点G是BF的中点;③若点H是AD的中点,则sin∠NBC=1010;④BN=2BM;⑤若AH=12HD,则S△BNDA.①②③④ B.①③⑤ C.①②④⑤ D.①②③④⑤阅卷人二、填空题(每小题3分,共30分)得分11.国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为.12.在函数y=x-3x+2中,自变量x的取值范围是13.如图,在菱形ABCD中,对角线AC,BD相交于点O,请添加一个条件,使得菱形ABCD为正方形.14.七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是.15.关于x的不等式组4-2x≥012x-a>0恰有3个整数解,则a16.如图,△ABC内接于⊙O,AD是直径,若∠B=25°,则∠CAD=°.17.若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是°.18.如图,在Rt△ABC中,∠ACB=90°,tan∠BAC=12,BC=2,AD=1,线段AD绕点A旋转,点P为CD的中点,则BP的最大值是19.矩形ABCD中,AB=3,BC=4,将AB沿过点A的一条直线折叠,折痕交直线BC于点P(点P不与点B重合),点B的对称点落在矩形对角线所在的直线上,则PC长为.20.如图,在平面直角坐标系中,正方形OMNP顶点M的坐标为(3,0),△OAB是等边三角形,点B坐标是(1,0),△OAB在正方形OMNP内部紧靠正方形OMNP的边(方向为O→M→N→P→O→M(→…)做无滑动滚动,第一次滚动后,点A的对应点记为A1,A1的坐标是(2,0);第二次滚动后,A1的对应点记为A2,A2的坐标是(2,0);第三次滚动后,A2的对应点记为A3,A3的坐标是(3-32,12);如此下去,……,则A2024阅卷人三、解答题(满分60分)得分21.先化简,再求值:m2-2m+1m2-122.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣2,3),C(﹣5,2).⑴画出△ABC关于y轴对称的△A1B1C1,并写出点B1的坐标;⑵画出△ABC绕点A逆时针旋转90°后得到的△AB2C2,并写出点B2的坐标;⑶在(2)的条件下,求点B旋转到点B2的过程中所经过的路径长(结果保留π).23.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中B(1,0),C(0,3).(1)求抛物线的解析式;(2)在第二象限的抛物线上是否存在一点P,使得△APC的面积最大.若存在,请直接写出点P坐标和△APC的面积最大值;若不存在,请说明理由.24.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合图解答下列问题:组别分组(cm)频数A50<x≤1003B100<x≤150mC150<x≤20020D200<x≤25014E250<x≤3005(1)频数分布表中m=,扇形统计图中n=;(2)本次调查立定跳远成绩的中位数落在组别;(3)该校有600名男生,若立定跳远成绩大于200cm为合格,请估计该校立定跳远成绩合格的男生有多少人?25.甲、乙两货车分别从相距225km的A、B两地同时出发,甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,乙货车沿同一条公路从B地驶往A地,但乙货车到达配货站时接到紧急任务立即原路原速返回B地,结果比甲货车晚半小时到达B地.如图是甲、乙两货车距A地的距离y(km)与行驶时间x(h)之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是km/h,乙货车的速度是km/h;(2)求甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离y(km)与行驶时间x(h)之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.26.已知△ABC是等腰三角形,AB=AC,∠MAN=12∠BAC,∠MAN在∠BAC的内部,点M、N在BC上,点M在点N的左侧,探究线段BM、NC、

(1)如图①,当∠BAC=90°时,探究如下:由∠BAC=90°,AB=AC可知,将△ACN绕点A顺时针旋转90°,得到△ABP,则CN=BP且∠PBM=90°,连接PM,易证△AMP≌△AMN,可得MP=MN,在Rt△PBM中,BM2+BP2=MP2,则有BM2+NC2=MN2.

(2)当∠BAC=60°时,如图②:当∠BAC=120°时,如图③,分别写出线段BM、NC、MN之间的数量关系,并选择图②或图③进行证明.27.为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲、乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)的条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?28.如图,在平面直角坐标系中,等边三角形OAB的边OB在x轴上,点A在第一象限,OA的长度是一元二次方程x2﹣5x﹣6=0的根,动点P从点O出发以每秒2个单位长度的速度沿折线OA﹣AB运动,动点Q从点O出发以每秒3个单位长度的速度沿折线OB﹣BA运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(0<t<3.6),△OPQ的面积为S.(1)求点A的坐标;(2)求S与t的函数关系式;(3)在(2)的条件下,当S=63时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.

答案解析部分1.【答案】C【解析】【解答】解:A、a3•a2=a5,故A错误,不符合题意;

B、(a2)5=a10,故B错误,不符合题意;

C、(﹣2a3b)3=﹣8a9b3,故C正确,符合题意;

D、(﹣a+b)(a+b)=b2﹣a2,故D错误,不符合题意.故答案为:C.【分析】由同底数乘法运算法则判断A,由幂的乘方运算法则判断B,由积的乘方运算法则可判断C,由平方差公式判断D.2.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A错误,不符合题意;B、既是轴对称图形又是中心对称图形,故B正确,符合题意;

C、是轴对称图形,不是中心对称图形,故C错误,不符合题意;

D、是轴对称图形,不是中心对称图形,故C错误,不符合题意.

故答案为:B.【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.3.【答案】C【解析】【解答】解:由题意可推理画出其组合情况为:或.

∴组成该几何体所需小正方体的个数最少是4个.故答案为:C.【分析】根据主视图和左视图推理还原最少的立体组合情况.4.【答案】D【解析】【解答】解:平均数=2+3+3+44=3,

方差=故答案为:D.【分析】由方差计算公式代入计算即可.5.【答案】D【解析】【解答】解:∵关于x的一元二次方程(m﹣2)x2+4x+2=0有两个实数根,

∴m-2≠0∆=42-4m-2×2≥0故答案为:D.【分析】由一元二次方程其二次项系数不为零,进一步结合根的个数与判别式关系得出不等关系组成不等式组,解之即可.6.【答案】A【解析】【解答】解:kxx-3方程两边同乘(x-3)得:kx-2(x-3)=-3

合并同类项得:(k-2)x=-9,

∵原分式方程无解,故分式方程存在增根或整式方程无解,

①若分式方程存在增根,即方程的解为x=3,

代入(k-2)x=-9,即k-2=-3,

解得k=-1;

②若整式方程无解,此时(k-2)x=-9无解,

即k-2=0,解得k=2;

综上所述,k=2或k=﹣1

故答案为:A.【分析】由含参数k的分式方程无解,分类考虑整式方程无解或分式方程存在增根情况,按一般解分式方程步骤进行求解分析即可.7.【答案】B【解析】【解答】解:设购买笔记本x本,碳素笔y支,

依题意得:3x+2y=28,其中x,y均为正整数,

∵2y和28均能被2整除,故3x也能被2整除,∴x为正偶数,即x=2,4,6,8,

故二元一次方程的整数解组合情况为:

x=2y=11,x=4y=8,x=6y=5,x=8y=2,

答:有4种购买方案,分别是①购买笔记本2本,碳素笔11支;②购买笔记本4本,碳素笔8支;③购买笔记本6本,碳素笔5支;【分析】设购买笔记本x本,碳素笔y支,根据购买x本笔记本+购买y支碳素笔的费用=28,列出二元一次方程,再求出其正整数解即可得出答案.8.【答案】A【解析】【解答】解:如图,过点A作AF⊥BD,垂足为点F,设OD=a,DE=b

∵E是AO的中点,

∴AE=OE,

又∵∠AEF=∠OED,∠AFE=∠ODE=90°,

∴△AEF≌△OED(AAS),

∴EF=DE=b,AF=OD=a,

∴点A(2a,2b),yB=b

∵A,B均在反比例函数上,

∴12=2a×2b=yB×xB,

解得ab=3,【分析】过点A作AF⊥BD,垂足为点F,用AAS证△AEF≌△OED,设代数表示点A的坐标,并利用A、B两点均在反比例函数上,进而表示出点B坐标,从而表示出目标三角形面积并计算其值.9.【答案】C【解析】【解答】解:如图,连接AC,∵O是菱形ABCD对角线BD中点,

∴A、O、C三点共线,BO=DO=12BD=4,

又∵OM=2,AM⊥BC,

∴AC=2OC=2AO=2MO=4,

在菱形ABCD中,∠CBO=∠CDO,AO⊥BO,

又∵∠ONM=∠NAO+∠AON=∠MBN+∠BMN,

∴∠OAN=∠NBM=∠COD,

在Rt△AON和Rt△BMN和Rt△COD中,

tan∠CDO=tan∠OAN=tan∠MBN,

∴CODO=NOAO=MNBM,即24=NO2=MNBM,

解得:NO=1,2MN=BM,

设MN=t,则BM=2t,

又∵BN=BO-NO=4-1=3,

【分析】由菱形对称性连接补全对角线,由斜边中线推理得出对角线AC的长,故此时菱形为固定的几何图形,利用角度转换可推理出等角,利用同角三角函数或相似结合勾股定理逐一计算边长往目标线段靠拢即可.10.【答案】A【解析】【解答】解:连接DG、HG,过点F作FP⊥AD,交AD延长线于点P,交BC延长线于点Q,

在正方形ABCD中,∵∠BAG=∠DAG=45°,AG=AG,AD=AB,

∴△ADG≌△ABG(SAS),

∴DG=BG,

又∵HF平分∠CDP,此时∠BDF=∠CDB+∠CDF=45°+45°=90°,

设∠DBG=x,

∴∠BDG=∠DBG=x,∠DGF=∠BDG+∠DBG=2x,∠BFD=90°-x,

∴∠GDF=180°-∠DGF-∠DFG=90°-x,

∴DG=GF,

∴点G是BF的中点,故②正确,符合题意;

又∵∠BHF=90°,

∴HG=BG=GF=DG,

∴B、H、D、F四点在以点G为圆心,BG为半径的圆上运动,此时∠HBF+∠HDF=180°,

∴∠HBF=180°-∠HDF=180°-135°=45°,故①正确,符合题意;

∴△BHF是等腰直角三角形,即BH=HF,

又∵∠BAH=∠HPF=90°,∠ABH+∠AHB=90°,∠AHB+∠FHP=90°,

∴∠ABH=∠PHF,

∴△ABH≌△PHF(AAS),

对于③,若点H是AD的中点,设AH=DH=a,则AB=HP=2a,PF=AH=a,

又∵∠QPA=∠PAB=∠ABQ=90°。

∴四边形ABQP是矩形,

∴PQ=AB=2a,BQ=AP=AH+HP=3a,QG=PQ-PF=a,

在Rt△BQF中,

BF=BQ2+FQ2=10,

∴sin∠NBC=QFBF=1010,故③正确,符合题意;

在正方形ABCD中,由∠ABD=∠HBF=∠BAM=∠BDN=45°,AD=2AB,

即∠ABM+∠MBD=∠MBD+∠DBN=45°,

∴∠ABM=∠DBN,

∴△ABM∽△DBN,

∴BNBM=BDBA=2,即BN=2BM,故④正确,符合题意;

对于⑤,若AH=12HD,设AH=b,则DH=2b,BC=AD=3b,

∵AD∥BC,

∴△AMH∽△CMB,

∴BMMH=BC【分析】利用已知双直角三角形结合直角三角形斜边中线先证明H是AD中点,后证明BHDF四点共圆,从而判断①②;后利用一线三垂直构造直角补全矩形,结合全等性质逐一表示各边并往目标角所在直角三角形靠拢,利用勾股定理求其斜边并得出目标角正弦值判断③;在①的基础上找出与目标线段相关的两三角形,利用相似即可直接判断④;在④相似基础上进而可以得出两三角形面积相似比,后利用已知线段比例关系转化即可得出目标三角形面积比.(注:本题意在解三角形,方法多样,仅供参考)11.【答案】1.3908×1012【解析】【解答】解:13908亿=1390800000000=1.3908×1012.故答案为:1.3908×1012.【分析】按科学记数法的表示形式进行表示即可,小技巧:亿为9位数,后接8个0,可较快完成表示.12.【答案】x≥3【解析】【解答】解:y=x-3x+2,为使得自变量x有意义,

即x+2≠0x-3≥0故答案为:x≥3.【分析】由分式和根式组成的式子结构,为使得其有意义,结合分母不为零即被开方数为非负数分析即可.13.【答案】AC=BD【解析】【解答】解:在菱形的基础上进行正方形的判定,常见的考虑有,

①有一个角为直角的菱形是正方形,如:∠ABC=90°;

②对角线相等的菱形是正方形,如:AC=BD,AO=BO等.故答案为:AC=BD.【分析】在菱形的基础上得出正方形的判定,可以从内角和对角线两个角度进行条件添加,言之有理即可.14.【答案】3【解析】【解答】解:记2名男生为A1,A2,3名女生为B1,B2,B3,

则选择2名学生的可能情况有,A1,A2,A1,B1,A1,B2,A故答案为:35【分析】列举所有可能发生的事件,找出满足题意的事件即可计算得出其概率.15.【答案】-1【解析】【解答】解:关于x的不等式组4-2x≥0①12x-a>0②,

解①得:x≤2;

解②得:x>2a,

∵不等式组恰好有3个整数解,

易分析该3个整数解为0,1,2,

即-1≤2a<0,

故答案为:-1【分析】解含参不等式组,即用参数a表示不等式组的解,进而由恰好3个整数解分析含参数解所在位置范围,需注意代入分析尝试临界整数值是否能取等问题.16.【答案】65【解析】【解答】解:连接CD,∵AC⏜=AC⏜,

∴∠D=∠B=25°,

又∵AD是直径,

∴∠ACD=90°,

【分析】利用同弧所对圆周角相等将条件转换往目标角靠拢,结合直径所对圆周角为直角即可推理计算得出目标角度数.17.【答案】90【解析】【解答】解:设圆锥母线长为l,圆心角度数为n°.

依题意得,圆锥侧面展开图的弧长=圆锥底面周长=2πr=2π×3=6π,

此时侧面积=12×l×6π=36π,故答案为:90.【分析】利用圆锥侧面展开扇形计算公式,在已知条件基础上代入公式先计算圆锥母线长,后得出其圆心角度数即可.18.【答案】2【解析】【解答】解:如图,取AC中点E,∵BC=2,tan∠BAC=12,

∴在Rt△ACB中,

tan∠BAC=BCAC=12,解得AC=4,

又∵P和E分别是CD和AC的中点,

∴AE=CE=12AC=2,PE=12AD=12,

在Rt△BCE中,有BE2=CE2+BC2【分析】根据题干已知条件解△ACB,即求出AC的长,利用动点P为中点构造中位线找出运动过程的不变量,从而得出BP的最大值,此处也可以视作圆的运动轨迹,从而分析其最值.19.【答案】52、7【解析】【解答】解:如图,以A为圆心,AB长为半径,此时点B对称点为圆上一点,

此时与对称轴所在直线共有3个交点,故对称点所在位置及点P共有三种情况,

在矩形ABCD中,

AB=3,AC=4,

∴AC=BD=AB2+BC2=5.由矩形及其翻折的性质可知,

设CP=a,AB'=AB=3,∠AB'P=∠ABC=90°,

BP'=BP=BC-CP=4-a,B'C=AC-AB'=2,

在Rt△B'PC中,有CP2=B'P2+B'C2,

∴x2=(4-x)2+22,解得x=52;

②如图,若点B对称点B'落在对角线BC上,

设AP与BD交于点Q,

由矩形翻折可知,∠ABP=∠AQB=90°,即∠BAP+∠ABQ=∠ABQ+∠CBD=90°,CD=AB=3,

∴∠BAP=∠CBD,

在Rt△ABP和Rt△CBD中,

∴tan∠CBD=tan∠BAP,

即CDBC=BPAB,

解得BP=94,

∴CP=BC-BP=4-94=74;

③如图,若点B对称点B'落在对角线AC延长上,

【分析】通过翻折变化作圆分析符合题意的对称点位置有三,后结合常用勾股定理等量关系设元解决矩形翻折的解三角形,其中适当引用相似或三角函数可更快解出对应目标线段长.20.【答案】(1,3)【解析】【解答】解:如图,观察点A变化后的坐标,观察可知,A12回到点A处,即A1-A12完成一圈的变化,后循环变化,

此时2024÷12=1688,故此时A2024的坐标与A8一致,【分析】将滚动变化的图形表示推理完整,后找出循环周期和目标循环的余数,进而找出与目标相同的点坐标即可得出结论.21.【答案】解:原式===1﹣m,当m=cos60°=1原式=1-1【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,进而约分化简;求出特殊角三角函数值代入化简后的式子计算即可.22.【答案】解:⑴△A1B1C1如图所示,

B1的坐标为(2,3);⑵△AB2C2如图所示,B2的坐标为(﹣3,0);⑶∵AB=12+∴点B旋转到点B2的过程中所经过的路径长为:90π⋅5【解析】【分析】(1)画出关于y轴对称后的三角形并写出目标点的坐标即可;

(2)找出△ABC顶点B、C绕点A逆时针旋转后的对应点,即画出旋转后的三角形,并写出目标点坐标即可;

(3)由旋转分析其经过路径为圆弧,结合勾股定理求出半径代入弧长公式中计算即可.23.【答案】(1)解:将B(1,0),C(0,3)代入抛物线y=﹣x2+bx+c中,-1+b+c=0c=3解得:b=-2c=3∴抛物线y=﹣x2﹣2x+3.(2)解:存在,P的坐标为(-32,154【解析】【解答】(2)解:存在,P的坐标为(-32,154);△APC面积的最大值为278.

令y=0,则0=﹣x2﹣2x+3,解得:x1=﹣3,x2=1,

∴A(﹣3,0),

∴OA=3,

∵C(0,3),

∴OC=3,

过点P作PE⊥x轴于点E,

设P(x,﹣x2﹣2x+3),且在第二象限内,

∴OE=﹣x,AE=3+x,

∴S△APC=S△APE+S梯形PCOE﹣S△AOC

=12×AE×PE+12(OC+PE)×OE-12×OA×OC

=12×(3+x)(﹣x2﹣2x+3)+12(3﹣x2﹣2x+3)(﹣x)-12×3×3

=-32(x+32)2+278

∵-24.【答案】(1)8;40(2)C(3)解:600×14+5答:估计该校立定跳远成绩合格的男生有228人.【解析】【解答】解:(1)依题意,组别A的频数为3,占比为6%,

故总人数=3÷6%=50(人);

组别B的频数m=50-3-20-14-5=8(人);

组别C的占比=2050=40%,故n=40.

故答案为:8;40;

(2)被抽取的50名学生立定跳远成绩按从小到大的顺序排列第25个和第26个的平均数,

∵3+8<25,3+8+20=31>25

∴被抽取的50名学生这一天的体育活动时间数据的中位数在C组;

故答案为:C;

【分析】(1)由频数分布表和统计图分析求出总调查总人数,进而得出各部分人数及其占比,即目标m和n的值;

(2)在(1)总人数的基础上,根据中位数的定义按从小到大排序找出中间数所在组别即可;25.【答案】(1)30;40(2)解:∵3.5+0.5=4(h),6﹣0.5=5.5(h),∴点E(4,105),F(5.5,225).设线段对应的函数解析式为y=kx+b(k、b为常数,且k≠0).将坐标E(4,105)和F(5.5,225)分别代入y=kx+b,得4k+b=1055.5k+b=225解得k=80b=-215∴甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离y与行驶时间x之间的函数解析式为y=80x﹣215(4≤x≤5.5).(3)解:出发32h或45【解析】【解答】解:(1)甲货车到配货站之前的速度=105÷3.5=30(km/h),

乙货车的速度=[2×(225-105)]÷6=40(km/h),

故答案为:30;40;

(3)线段CM对应的函数表达式为y=225﹣40x=﹣40x+225(0≤x≤3),线段MN对应的函数表达式为y=105+40(x﹣3)=40x﹣15(3<x≤6),

线段OD对应的函数表达式为y=30x(0≤x≤3.5).

①当0≤x≤3时,甲货车离配货站的距离为(105﹣30x)km,乙货车离配货站的距离为﹣40x+225﹣105=(﹣40x+120)km,

根据“甲、乙两货车与配货站的距离相等”,得105﹣30x=﹣40x+120,解得x=32;

②当3<x≤3.5时,甲货车离配货站的距离为(105﹣30x)km,乙货车离配货站的距离为40x﹣15﹣105=(40x﹣120)km,

根据“甲、乙两货车与配货站的距离相等”,得105﹣30x=40x﹣120,解得x=4514;

③当乙货车返回B地过程中与甲货车相遇时,两车与配货站的距离相等,根据“相遇时两车与A地距离相等”,80x﹣215=40x﹣15,解得x=5;

综上所述,出发32h或4514h或5h甲、乙两货车与配货站的距离相等.26.【答案】解:图②的结论是BM2+NC2+BM•NC=MN2.证明:∵AB=AC,∠BAC=60°,

∴△ABC是等边三角形,

∴∠ABC=∠ACB=60°,

以点B为顶点在△ABC外作∠ABK=60°,在BK上截取BQ=CN,连接QA、QM,过点Q作QH⊥BC,垂足为H,

∵AB=AC,∠C=∠ABQ,CN=BQ,

∴△ACN≌△ABQ(SAS),

∴AN=AQ,∠CAN=∠QAB,

又∵∠CAN+∠BAM=30°,

∴∠BAM+∠QAB=30°,

即∠QAM=∠MAN,

又∵AM=AM,

∴△AQM≌△ANM(SAS),

∴MN=QM;

∵ABQ=60°,∠ABC=60°,

∴∠QBH=60°,

∴∠BQH=30°,

∴BH=12BQ,QH=32BQ,

∴HM=BM+BH=BM+12BQ,

在Rt△QHM中,可得:QH2+HM2=QM2,即(32BQ)2+(BM+12BQ)2=QM2,

整理得BM2+BQ2+BM•BQ=QM2.

∴BM2+NC2+BM•NC=MN2.

图③的结论是:BM2+NC2﹣BM•NC=MN2.

证明:以点B为顶点在△ABC外作∠ABK=30°,在BK上截取BQ=CN,连接QA、QM,过点Q作QH⊥BC,垂足为H,

∵AB=AC,∠C=∠ABQ,CN=BQ,

∴△ACN≌△ABQ(SAS),

∴AN=AQ,∠CAN=∠QAB,

又∵∠CAN+∠BAM=60°,

∴∠BAM+∠QAB=60°,即∠QAM=∠MAN,

又∵AM=AM,

∴△AQM≌△ANM(SAS),

∴MN=QM,

在Rt△BQH中,∠QBH=60°,∠BQH=30°,

∴BH=12BQ,QH=32BQ,

HM=BM﹣BH=BM-12BQ,

在Rt△QHM中,可得:QH2+HM2=QM2,即(32BQ)2+(BM-12BQ)2=QM2,

【解析】【分析】(1)类比(1)推理选取顶角为60°等腰三角形进行旋转(即作全等),进而证明二次全等将目标三线段进行靠拢,结合全等性质推出特殊角后,利用特殊角作垂解三角形,从而得出含特殊三角形三边关系,即目标线段的三边关系.

(2)同理推出顶角为120°的等腰三角形即可.27.【答案】(1)解:设购买一个甲种品牌毽子需要x元,一个乙种品牌毽子需要y元,根据题意得:10x+5y=20015x+10y=325解得:x=15y=10答:购买一个甲种品牌毽子需要15元,一个乙种品牌毽子需要10元;(2)解:设购买m个甲种品牌毽子,则购买1000-15m10=(100根据题意得:m≥5(100-3解得:100017又∵m,(100-3∴m可以为60,62,64,∴学校共有3种购买方案,方案1:购买60个甲种品牌毽子,10个乙种品牌毽子;方案2:购买62个甲种品牌毽子,7个乙种品牌毽子;方案3:购买64个甲种品牌毽子,4个乙种品牌毽子;(3)解:学校选择方案1商家可获得的总利润为5×60+4×10=340(元);学校选择方案2商家可获得的总利润为5×62

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论