专题14矩形菱形正方形(原卷版+解析)_第1页
专题14矩形菱形正方形(原卷版+解析)_第2页
专题14矩形菱形正方形(原卷版+解析)_第3页
专题14矩形菱形正方形(原卷版+解析)_第4页
专题14矩形菱形正方形(原卷版+解析)_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题14矩形,菱形,正方形菱形的判定与性质应用1.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.2.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为()A. B. C. D.3.(2023•丽水)如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为()A. B.1 C. D.4.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cosB=,则FG的长是()A.3 B. C. D.5.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是.6.(2022•温州)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N在对角线AC上.若AE=3BE,则MN的长为.7.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.8.(2023•浙江)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.9.(2022•嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.矩形的判定与性质应用10.(2023•杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则=()A. B. C. D.11.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积 B.△ACD的面积 C.△ABC的面积 D.矩形BCDE的面积12.(2023•台州)如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为.13.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.14.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为,sin∠AFE的值为.15.(2021•温州)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d的值为;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,C′.以大正方形的中心O为圆心作圆,则当点A′,B′,C′在圆内或圆上时,圆的最小面积为.16.(2023•温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.(1)求证:BE=CF;(2)当=,AD=4时,求EF的长.17.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.(1)求证:△PDE≌△CDF;(2)若CD=4cm,EF=5cm,求BC的长.18.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.正方形的判定与性质应用19.(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1 B.2 C.3 D.420.(2023•绍兴)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形 B.菱形→正方形→平行四边形→菱形→平行四边形 C.平行四边形→矩形→平行四边形→菱形→平行四边形 D.平行四边形→菱形→正方形→平行四边形→菱形21.(2023•金华)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是()A. B. C. D.22.(2022•宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形EFGH的面积 C.△BEF的面积 D.△AEH的面积23.(2021•台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.24.(2023•绍兴)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.(1)求证:∠DAG=∠EGH;(2)判断AH与EF是否垂直,并说明理由.25.(2023•杭州)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=,求DF的长.(2)求证:AE•CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.26.(2022•湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.①若S1=9,S2=16,求S的值;②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2﹣S1=2S.(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2﹣S1与S之间的等量关系,并说明理由.27.(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.①求证:EK=2EH;②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.28.(2023•浙江)如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB与DC重合,折痕为EF,展开后如图②;第二步,再将图②中的纸片沿对角线BD折叠,展开后如图③;第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线BD上的点H处,如图④.则DH的长为()A. B. C. D.29.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC30.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为;当点M的位置变化时,DF长的最大值为.31.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.32.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠β B.2∠α=3∠β C.4∠α+∠β=180° D.3∠α+2∠β=180°33.(2022•嘉兴)“方胜”是中国古代妇女的一种首饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm34.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m235.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A. B. C.10 D.36.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2 B. C. D.37.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为()A. B. C. D.四边形综合题38.(2022•衢州)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.(1)求证:∠DBG=90°.(2)若BD=6,DG=2GE.①求菱形ABCD的面积.②求tan∠BDE的值.(3)若BE=AB,当∠DAB的大小发生变化时(0°<∠DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.39.(2022•台州)图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=A1B1,依次连接它们,得到四边形A2B2C2D2;……如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形.(2)求的值.(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.40.(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.41.(2022•金华)如图,在菱形ABCD中,AB=10,sinB=,点E从点B出发沿折线B﹣C﹣D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:FA=FG.(2)若EF=FG,当EF过AC中点时,求AG的长.(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?42.(2021•衢州)【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).43.(2022•舟山)如图1,在正方形ABCD中,点F,H分别在边AD,AB上,连结AC,FH交于点E,已知CF=CH.(1)线段AC与FH垂直吗?请说明理由.(2)如图2,过点A,H,F的圆交CF于点P,连结PH交AC于点K.求证:=.(3)如图3,在(2)的条件下,当点K是线段AC的中点时,求的值.

专题14矩形,菱形,正方形菱形的判定与性质应用1.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为(,0).【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.【解答】解:如图,方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,∴S△BOD=S△AOB=S矩形AOCB=,∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∴S梯形BEGD=S△BOD=,∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,方法二:如图,连接BF,BD,作DG⊥x轴于G,直线BD交x轴于H,由上知:DF∥OB,∴S△BOF=S△BOD=,∵S△BOE=|k|=3,∴==,设EF=a,FG=b,则OE=2a,∴BE=,OG=3a+b,DG=,∵△BOE∽△DFG,∴=,∴=,∴a=b,a=﹣(舍去),∴D(4a,),∵B(2a,),∴==,∴GH=EG=2a,∵∠ODH=90°,DG⊥OH,∴△ODG∽△DHG,∴,∴,∴a=,∴3a=,∴F(,0)故答案为:,(,0).2.(2023•温州)图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC上,过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时,EH的长为()A. B. C. D.【分析】根据菱形的性质得到CD=DE=CF=EF=2,CF∥DE,CD∥EF,根据直角三角形的性质得到OD=2DE=4,OE=DE=2,求得CO=CD+DO=6,根据勾股定理和相似三角形的性质即可得到结论.【解答】解:∵四边形CDEF是菱形,DE=2,∴CD=DE=CF=EF=2,CF∥DE,CD∥EF,∵∠CBO=90°,∠BOC=30°,∴OD=2DE=4,OE=DE=2,∴CO=CD+DO=6,∴BC=AB=CD=3,OB=BC=3,∵∠A=90°,∴==3,∵EF∥CD,∴∠BEF=∠BOC=30°,∴,∵EH⊥AB,∴EH∥OA,∴△BHE∽△BAO,∴,∴,∴EH=,故选:C.3.(2023•丽水)如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为()A. B.1 C. D.【分析】连接BD交AC于点O,由菱形的性质得OA=OC,∠BAO=30°,AC⊥BD,再由含30°角的直角三角形的性质得OB=,然后由勾股定理得OA=,即可得出结论.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,∠DAB=60°,∴OA=OC,∠BAO=∠DAB=30°,AC⊥BD,∴∠AOB=90°,∴OB=AB=,∴OA===,∴AC=2OA=,故选:D.4.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cosB=,则FG的长是()A.3 B. C. D.【分析】方法一:过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,根据cosB==,可得BH=1,所以AH=,然后证明AH是BE的垂直平分线,可得AE=AB=4,设GA=GF=x,根据S梯形CEAD=S梯形CEGF+S梯形GFDA,进而可以解决问题.方法二:作AH垂直BC于H,延长AE和DC交于点M由已知可得BH=EH=1,所以AE=AB=EM=CM=4设GF=x,则AG=x,GE=4﹣x,由三角形MGF相似于三角形MEC即可得结论.方法三:作AN⊥BC,延长FG交AB于H,易证△ABE为等腰三角形,易得HF=BC=4及△AHG∽△ABE设AG=GF=a,得a的值,进而可以解决问题.【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cosB==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cosD=cosB==,∴DQ=x,∴FQ===x,∵S梯形CEAD=S梯形CEGF+S梯形GFDA,∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD为等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cosB==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.方法三:作AN⊥BC,延长FG交AB于H,∴BN=1,∵E为BC中点,∴BE=2,∴BN=EN=1,∴AN是BE的垂直平分线,∴AB=AE,∴△ABE为等腰三角形,∵AF平分∠EAD,GF∥AD,∴∠GAF=∠DAF,∠DAF=∠AFG,∴∠AFG=∠GAF,∴AG=GF,又四边形ADFH是平行四边形,∴HF=BC=4,△AHG∽△ABE,设AG=GF=a,∴HG=4﹣a,∴a:4=(4﹣a):2,解得a=.∴GF=.故选:B.5.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是10°或80°.【分析】根据菱形的性质可得∠DAC=20°,再根据等腰三角形的性质可得∠AEC的度数.【解答】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E′,如图所示,在菱形ABCD中,∠DAC=∠BAC,∵∠DAB=40°,∴∠DAC=20°,∵AC=AE,∴∠AEC=(180°﹣20°)÷2=80°,∵AE′=AC,∴∠AE′C=∠ACE′=10°,综上所述,∠AEC的度数是10°或80°,故答案为:10°或80°.6.(2022•温州)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N在对角线AC上.若AE=3BE,则MN的长为.【分析】方法一:根据菱形的性质和锐角三角函数,可以求得AC、AM和MN的长,然后即可计算出MN的长.方法二:根据相似三角形的判定和性质可以得到EF和MN的关系,然后解直角三角形可以求得OA的长,从而可以得到MN的长.【解答】解:方法一:连接DB交AC于点O,作MI⊥AB于点I,作FJ⊥AB交AB的延长线于点J,如图1所示,∵四边形ABCD是菱形,∠BAD=60°,AB=1,∴AB=BC=CD=DA=1,∠BAC=30°,AC⊥BD,∵△ABD是等边三角形,∴OD=,∴AO===,∴AC=2AO=,∵AE=3BE,∴AE=,BE=,∵菱形AENH和菱形CGMF大小相同,∴BE=BF=,∠FBJ=60°,∴FJ=BF•sin60°=×=,∴MI=FJ=,∴AM===,同理可得,CN=,∴MN=AC﹣AM﹣CN=﹣=,故答案为:.方法二:连接DB交AC于点O,连接EF,由题意可得,四边形AMFE是平行四边形,四边形EFCN是平行四边形,∴EF=AM=CN,∵EF∥AC,∴△BEF∽△BAC,∴,∵AE=3BE,AB=1,∴AB=4BE,∴=,∴AM=CN=AC,∴MN=AC=OA,∵∠BAD=60°.AB=AD=1,AO垂直平分BD,∴OD=,∴OA===,∴MN=,故答案为:.7.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为2cm.【分析】连接BD,过点E作EF⊥AC于点F,根据菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得AD∥A′E,可得=,=,解得A′E=4(cm),再利用30度角所对直角边等于斜边的一半即可求出结论.【解答】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴=,∴=,∴A′E=4(cm),∵∠EA′F=∠DAC=DAB=30°,∴EF=A′E=2(cm).故答案为:2.8.(2023•浙江)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.【分析】(1)欲证明AE=AF,只需要证得△ABE≌△ADF即可;(2)根据菱形的邻角互补和全等三角形的性质进行推理解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.又∵AE⊥BC于点E,AF⊥CD于点F,∴∠AEB=∠AFD=90°,在△ABE与△ADF中,∵.∴△ABE≌△ADF(AAS).∴AE=AF;(2)解:∵四边形ABCD是菱形,∴∠B+∠BAD=180°.而∠B=60°,∴∠BAD=120°.又∵∠AEB=90°,∠B=60°,∴∠BAE=30°.由(1)知△ABE≌△ADF,∴∠BAE=∠DAF=30°.∴∠EAF=120°﹣30°﹣30°=60°.∴△AEF是等边三角形.∴∠AEF=60°.9.(2022•嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.矩形的判定与性质应用10.(2023•杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则=()A. B. C. D.【分析】先证△ABO是等边三角形,可得∠BAO=60°,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOB=60°,∴△ABO是等边三角形,∴∠BAO=60°,∴∠ACB=30°,∴BC=AB,∴=,故选:D.11.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积 B.△ACD的面积 C.△ABC的面积 D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.12.(2023•台州)如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为.【分析】根据矩形的性质可得出∠AEB=∠FBC,结合已知BE=BC,利用AAS证得△ABE和△FCB全等,得出FC=AB=4,再根据矩形的性质得到BC=AD=6,从而在Rt△FCB中利用勾股定理求出BF的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠AEB=∠FBC,∵CF⊥BE,∴∠CFB=90°,∴∠CFB=∠A,在△ABE和△FCB中,,∴△ABE≌△FCB(AAS),∴FC=AB=4,∵四边形ABCD是矩形,∴BC=AD=6,在Rt△FCB中,由勾股定理得,故答案为:.13.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是a﹣b;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是3+2.【分析】(1)直接根据线段的差可得结论;(2)先把b当常数解方程:a2﹣2ab﹣b2=0,a=b+b(负值舍),根据四个矩形的面积都是5表示小矩形的宽,最后计算面积的比,化简后整体代入即可解答.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.14.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为2,sin∠AFE的值为﹣1.【分析】连接BF,FM,由翻折及BM=ME可得四边形BEFM为菱形,再由菱形对角线的性质可得BN=BA.先证明△AEF≌△NMF得AE=NM,再证明△FMN∽△CGN可得=,进而求解.【解答】解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴∠GCM=∠GMC,∴MG=GC=1,∵G为CD中点,∴CD=AB=2.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴FA=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,FA=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,∵FM∥GC,∴△FMN∽△CGN,∴=,即=,解得x=2+(舍)或x=2﹣,∴EF=BE=2﹣x=,∴sin∠AFE===﹣1.故答案为:2;﹣1.15.(2021•温州)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d的值为6﹣2;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,C′.以大正方形的中心O为圆心作圆,则当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8)π.【分析】如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH⊥B′C′于H.证明∠EGF=30°,解直角三角形求出JK,OH,B′H,再求出OB′2,可得结论.【解答】解:如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH⊥B′C′于H.∵大正方形的面积=12,∴FG=GW=2,∵EF=WK=2,∴在Rt△EFG中,tan∠EGF===,∴∠EGF=30°,∵JK∥FG,∴∠KJG=∠EGF=30°,∴d=JK=GK=(2﹣2)=6﹣2,∵OF=OW=FW=,C′W=,∴OC′=﹣,∵B′C′∥QW,B′C′=2,∴∠OC′H=∠FWQ=45°,∴OH=HC′=﹣1,∴HB′=2﹣(﹣1)=3﹣,∴OB′2=OH2+B′H2=(﹣1)2+(3﹣)2=16﹣8,∵OA′=OC′<OB′,∴当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8)π.故答案为:6﹣2,(16﹣8)π.16.(2023•温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.(1)求证:BE=CF;(2)当=,AD=4时,求EF的长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到GE=GF,再根据等边对等角得出∠E=∠GFE,根据矩形的性质得出AB=DC,∠ABC=∠DCB=90°,于是可证△ABF和△DCE全等,得到BF=CE,从而问题得证;(2)先证△ECD∽△EFH,得出比例式,再结合已知即可求出EF的长.【解答】(1)证明:∵FH⊥EF,∴∠HFE=90°,∵GE=GH,∴,∴∠E=∠GFE,∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,∴△ABF≌△DCE(AAS),∴BF=CE,∴BF﹣BC=CE﹣BC,即BE=CF;(2)解:∵四边形ABCD是矩形,∴DC⊥BC,即DC⊥EF,AB=CD,BC=AD=4,∵FH⊥EF,∴CD∥FH,∴△ECD∽△EFH,∴,∴,∵,∴,设BE=CF=x,∴EC=x+4,EF=2x+4,∴,解得x=1,∴EF=6.17.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.(1)求证:△PDE≌△CDF;(2)若CD=4cm,EF=5cm,求BC的长.【分析】(1)根据ASA证明两个三角形全等即可;(2)如图,过点E作EG⊥BC于G,由勾股定理计算FG=3,设CF=x,在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,列方程可解答.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠B=∠C=90°,AB=CD,由折叠得:AB=PD,∠A=∠P=90°,∠B=∠PDF=90°,∴PD=CD,∵∠PDF=∠ADC,∴∠PDE=∠CDF,在△PDE和△CDF中,,∴△PDE≌△CDF(ASA);(2)解:如图,过点E作EG⊥BC于G,∴∠EGF=90°,EG=CD=4,在Rt△EGF中,由勾股定理得:FG==3,设CF=x,由(1)知:PE=AE=BG=x,∵AD∥BC,∴∠DEF=∠BFE,由折叠得:∠BFE=∠DFE,∴∠DEF=∠DFE,∴DE=DF=x+3,在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,∴x2+42=(x+3)2,∴x=,∴BC=2x+3=+3=(cm).18.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.【分析】(1)根据矩形的性质求出AC=2AO,根据等边三角形的判定得出△AOB是等边三角形,求出AB=AO=2,求出BD;(2)根据勾股定理求出AD,然后根据等腰三角形的性质求得AE,然后解直角三角形求得tanα的值.【解答】解:(1)∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=2,∴BO=2,∴BD=2BO=4,∴矩形对角线的长为4;(2)由勾股定理得:AD===2,∵OA=OD,OE⊥AD于点E,∴AE=DE=AD=,∴tanα==.正方形的判定与性质应用19.(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据题意作出合适的辅助线,然后逐一分析即可.【解答】解:连接AC,MN,且令AC,MN,BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.20.(2023•绍兴)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形 B.菱形→正方形→平行四边形→菱形→平行四边形 C.平行四边形→矩形→平行四边形→菱形→平行四边形 D.平行四边形→菱形→正方形→平行四边形→菱形【分析】根据题意,分别证明四边形E1E2F1F2是菱形,平行四边形,矩形,即可求解.【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°﹣60°=30°,∵OE=OF、OB=OD,∴DF=EB,∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1,E1F2=E2F1.∵对称∴∠F2DC=∠CDF=60°,∴∠EDA=∠E1DA=30°,∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1,∵E1F2=E2F1,∴四边形E1E2F1F2是平行四边形,如图2所示,当E,F,O三点重合时,DO=OB,∴DE1=DF2=AE1=AE2,即E1E2=E1F2,∴四边形E1E2F1F2是菱形.如图3所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=2,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴.根据对称性可得.∴AD2=12,=9,=3,∴,∴ΔDE1A是直角三角形,且∠E1=90°,四边形E1E2F1F2是矩形.当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F2F2是菱形,∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.21.(2023•金华)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是()A. B. C. D.【分析】由正方形的性质得AB=AF,AC=AH,∠BAF=∠CAH=90°,则∠BAC=∠FAH=90°﹣∠CAF,可证明△ABC≌△AFH,得BC=HF,而HF=FG,所以BC=FG,再证明△BCQ≌△FGP,得CQ=GP,设AC=AH=GH=2m,则HF=FG=BC=m,可求得BE=AF=m,由==tan∠GFP=tan∠HAF==,得CQ=BC=m,由===tan∠PBE,得PE=BE=m,即可求得S四边形PCQE=m2,S正方形ABEF=5m2,则==,于是得到问题的答案.【解答】解:∵四边形ABEF、四边形ADGH、四边形BDMN都是正方形,∴AB=AF,AC=AH,∠BAF=∠CAH=90°,∴∠BAC=∠FAH=90°﹣∠CAF,∴△ABC≌△AFH(SAS),∴BC=HF,∵HF=FG,∴BC=FG,∵∠ACG=∠ACB=∠BCM=90°,∴∠ADB+∠ACB=180°,∠ACB+∠BCM=180°,∴B、C、G三点在同一条直线上,A、C、M三点在同一条直线上,∵∠BCQ=∠G=∠E=90°,∠BPE=∠FPG,∴∠CBQ=90°﹣∠BPE=90°﹣∠FPG=∠GFP,∴△BCQ≌△FGP(ASA),∴CQ=GP,设AC=AH=GH=2m,则HF=FG=BC=m,∴BE=AF==m,∵∠G=∠H=∠AFE=90°,∴∠GFP=∠HAF=90°﹣∠AFH,∴==tan∠GFP=tan∠HAF==,∴CQ=BC=m,∵∠E=∠BCQ=90°,∴===tan∠PBE,∴PE=BE=×m=m,∴S四边形PCQE=m×m﹣m×m=m2,∵S正方形ABEF=(m)2=5m2,∴==,故选:B.22.(2022•宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形EFGH的面积 C.△BEF的面积 D.△AEH的面积【分析】根据题意设PD=x,GH=y,则PH=x﹣y,根据矩形纸片和正方形纸片的周长相等,可得AP=x+y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD=x,GH=y,则PH=x﹣y,∵矩形纸片和正方形纸片的周长相等,∴2AP+2(x﹣y)=4x,∴AP=x+y,∵图中阴影部分的面积=S矩形ABCD﹣2△ADH﹣2S△AEB=(2x+y)(2x﹣y)﹣2ו(x﹣y)(2x+y)﹣2ו(2x﹣y)•x=4x2﹣y2﹣(2x2+xy﹣2xy﹣y2)﹣(2x2﹣xy)=4x2﹣y2﹣2x2+xy+y2﹣2x2+xy=2xy,A、正方形纸片的面积=x2,故A不符合题意;B、四边形EFGH的面积=y2,故B不符合题意;C、△BEF的面积=•EF•BQ=xy,故C符合题意;D、△AEH的面积=•EH•AM=y(x﹣y)=xy﹣y2,故D不符合题意;故选:C.23.(2021•台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.【分析】由正方形的性质可得AB=AD=5,∠ABC=∠BAD=90°,通过证明△ABF∽△GAE,可得,可求解.【解答】解:∵四边形ABCD是正方形,∴AB=AD=5,∠ABC=∠BAD=90°,∵AE=DG=1,∴AG=4,∵AF⊥EG,∴∠BAF+∠AEG=90°=∠BAF+∠AFB,∴∠AFB=∠AEG,∴△ABF∽△GAE,∴,∴,∴BF=,故答案为.24.(2023•绍兴)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.(1)求证:∠DAG=∠EGH;(2)判断AH与EF是否垂直,并说明理由.【分析】(1)直接由平行公理的推理即可解答.(2)先连接CG,然后根据正方形的性质得出△ADG≌△CDG,从而得到∠DAG=∠DCG.再证明∠EGH=∠DCG=∠OEC即可.【解答】(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,∴∠ADE=∠GEC=90°,∴AD∥GE,∴∠DAG=∠EGH.(2)解:AH⊥EF,理由如下.连结GC交EF于点O,如图:∵BD为正方形ABCD的对角线,∴∠ADG=∠CDG=45°,又∵DG=DG,AD=CD,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG.在正方形ABCD中,∠ECF=90°,又∵GE⊥CD,GF⊥BC,∴四边形FCEG为矩形,∴OE=OC,∴∠OEC=∠OCE,∴∠DAG=∠OEC,由(1)得∠DAG=∠EGH,∴∠EGH=∠OEC,∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,∴∠GHE=90°,∴AH⊥EF.25.(2023•杭州)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=,求DF的长.(2)求证:AE•CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.【分析】(1)通过证明△DEF∽△CBF,由相似三角形的性质可求解;(2)通过证明△ABE∽△CFB,可得,可得结论;(3)设EG=ED=x,则AE=1﹣x,BE=1+x,由勾股定理可求解.【解答】(1)解:∵四边形ABCD是正方形,∴AD∥BC,AB=AD=BC=CD=1,∴△DEF∽△CBF,∴,∴,∴DF=;(2)证明:∵AB∥CD,∴∠ABE=∠F,又∵∠A=∠BCD=90°,∴△ABE∽△CFB,∴,∴AE•CF=AB•BC=1;(3)解:设EG=ED=x,则AE=AD﹣AE=1﹣x,BE=BG+GE=BC+GE=1+x,在Rt△ABE中,AB2+AE2=BE2,∴1+(1﹣x)2=(1+x)2,∴x=,∴DE=.26.(2022•湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.①若S1=9,S2=16,求S的值;②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2﹣S1=2S.(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2﹣S1与S之间的等量关系,并说明理由.【分析】(1)①由S1=9,S2=16,求得b=3,a=4,进而求出S=ab=6;②先证明△AFN∽△NAB,得出,进而得出ab+b2=a2,即可证明S2﹣S1=2S;(2)先证明△ABC≌△FBE(SAS),得出AC=FE=b,∠FEB=∠ACB=90°,求出∠FEC=30°,利用三角函数得出b=a,进而得出S=ab=a2,利由等边三角形的性质求出,,通过计算得出S2﹣S1=×,即可证明S2﹣S1=S.【解答】(1)①解:∵S1=9,S2=16,∴b=3,a=4,∵∠ACB=90°,∴S=ab==6;②证明:由题意得:∠FAN=∠ANB=90°,∴∠FAH+∠NAB=90°,∵FH⊥AB,∴∠FAH+∠AFN=90°,∴∠AFN=∠NAB,∴△AFN∽△NAB,∴=,即,∴ab+b2=a2,∴2S+S1=S2,∴S2﹣S1=2S;(2)解:S2﹣S1=S,理由:∵△ABF和△CBE都是等边三角形,∴AB=FB,CB=EB,∠ABF=∠CBE=60°,∴∠ABF﹣∠CBF=∠CBE﹣∠CBF,∴∠ABC=∠FBE,在△ABC和△FBE中,,∴△ABC≌△FBE(SAS),∴AC=FE=b,∠FEB=∠ACB=90°,∴∠FEC=90°﹣60°=30°,∵EF⊥CF,CE=BC=a,∴cos∠FEC=,即cos30°=,∴b=acos30°=a,∴S=ab=a2,∵△ACD和△CBE都是等边三角形,∴,,∴S2﹣S1==﹣==×,∴S2﹣S1=S.27.(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.①求证:EK=2EH;②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.【分析】(1)由点M是边AB的中点,若AB=4,当点E与点M重合,得出AE=BE=2,由AE=2BF,得出BF=1,由勾股定理得出EF2=5,即可求出正方形EFGH的面积;(2)①由“一线三直角”证明△AKE∽△BEF,得出,由AE=2BF,得出,进而证明EK=2EH;②先证明△KHI≌△FGJ,得出S△KHI=S△FGJ=S1,再证明△KAE∽△KHI,得出==,由正弦的定义得出sinα=,进而得出sin2α=,得出=4sin2α,即可证明=4sin2α﹣1.【解答】(1)解:如图1,∵点M是边AB的中点,若AB=4,当点E与点M重合,∴AE=BE=2,∵AE=2BF,∴BF=1,在Rt△EBF中,EF2=EB2+BF2=22+12=5,∴正方形EFGH的面积=EF2=5;(2)如图2,①证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠K+∠AEK=90°,∵四边形EFGH是正方形,∴∠KEF=90°,EH=EF,∴∠AEK+∠BEF=90°,∴∠AKE=∠BEF,∴△AKE∽△BEF,∴,∵AE=2BF,∴,∴EK=2EF,∴EK=2EH;②证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠KIH=∠GJF,∵四边形EFGH是正方形,∴∠IHK=∠EHG=∠HGF=∠FGJ=90°,EH=FG,∵KE=2EH,∴EH=KH,∴KH=FG,在△KHI和△FGJ中,,∴△KHI≌△FGJ(AAS),∴S△KHI=S△FGJ=S1,∵∠K=∠K,∠A=∠IHK=90°,∴△KAE∽△KHI,∴==,∵sinα=,∴sin2α=,∴=4sin2α,∴=4sin2α﹣1.28.(2023•浙江)如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB与DC重合,折痕为EF,展开后如图②;第二步,再将图②中的纸片沿对角线BD折叠,展开后如图③;第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线BD上的点H处,如图④.则DH的长为()A. B. C. D.【分析】过点M作MG⊥BD于点G,根据勾股定理求得BD=5,由折叠可知BE=CE=EH=BC=2,∠C=∠EHM=90°,CM=HM,进而得出BE=EH,∠EBH=∠EHB,利用等角的余角相等可得∠HDM=∠DHM,则DM=HM,于是可得DM=HM=CM=CD=,由等腰三角形的性质可得DH=2DG,易证明△MGD∽△BCD,利用相似三角形的性质即可求解.【解答】解:如图,过点M作MG⊥BD于点G,∵四边形ABCD为矩形,AB=3,BC=4,∴AB=CD=3,∠C=90°,在Rt△BCD中,BD===5,根据折叠的性质可得,BE=CE=BC=2,∠C=∠EHM=90°,CE=EH=2,CM=HM,∴BE=EH=2,∴△BEH为等腰三角形,∠EBH=∠EHB,∵∠EBH+∠HDM=90°,∠EHB+∠DHM=90°,∴∠HDM=∠DHM,∴△DHM为等腰三角形,DM=HM,∴DM=HM=CM=CD=,∵MG⊥BD,∴DH=2DG,∠MGD=∠BCD=90°,∵∠MDG=∠BDC,∴△MGD∽△BCD,∴,即,∴DG=,∴DH=2DG=.故选:D.29.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC【分析】由矩形的性质及勾股定理可求出BD=10;由折叠的性质可得出AB=BG=6,CD=DH=6,则可求出GH=2;证出∠A=∠BGE=∠C=∠DHF=90°,由平行线的判定可得出结论;由勾股定理求出CF=3,根据平行线分线段成比例定理可判断结论.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD===10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG﹣GH=6﹣2=4,设FC=HF=x,则BF=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CF=3,∴,又∵,∴,若GF⊥BC,则GF∥CD,∴,故D选项符合题意.故选:D.30.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为3;当点M的位置变化时,DF长的最大值为6﹣3.【分析】如图1中,求出等边△ADB的高DE即可.如图2中,连接AM交EF于点O,过点O作OK⊥AD于点K,交BC于点T,过点A作AG⊥CB交CB的延长线于点G,取AD的中点R,连接OR.证明OK=,求出AF的最小值,可得结论.【解答】解:如图1中,∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠A=∠C=60°,∴△ADB,△BDC都是等边三角形,当点M与B重合时,EF是等边△ADB的高,EF=AD•sin60°=6×=3.如图2中,连接AM交EF于点O,过点O作OK⊥AD于点K,交BC于点T,过点A作AG⊥CB交CB的延长线于点G,取AF的中点R,连接OR.∵AD∥CG,OK⊥AD,∴OK⊥CG,∴∠G=∠AKT=∠GTK=90°,∴四边形AGTK是矩形,∴AG=TK=AB•sin60°=3,∵OA=OM,∠AOK=∠MOT,∠AKO=∠MTO=90°,∴△AOK≌△MOT(AAS),∴OK=OT=,∵OK⊥AD,∴OR≥OK=,∵∠AOF=90°,AR=RF,∴AF=2OR≥3,∴AF的最小值为3,∴DF的最大值为6﹣3.解法二:如图,过点D作DT⊥CB于点T.∵DF=AD﹣AF,∴当AF最小时,DF的值最大,∵AF=FM≥DT=3,∴AF的最小值为3,∴DF的最大值为6﹣3.故答案为:3,6﹣3.31.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=18度.【分析】连接DM,利用斜边上的中线等于斜边的一半可得△AMD和△MCD为等腰三角形,∠DAF=∠MDA,∠MCD=∠MDC;由折叠可知DF=DC,可得∠DFC=∠DCF;由MF=AB,AB=CD,DF=DC,可得FM=FD,进而得到∠FMD=∠FDM;利用三角形的外角等于和它不相邻的两个内角的和,可得∠DFC=2∠FMD;最后在△MDC中,利用三角形的内角和定理列出方程,结论可得.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.32.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠β B.2∠α=3∠β C.4∠α+∠β=180° D.3∠α+2∠β=180°【分析】由菱形和旋转的性质可证:∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,再根据AD∥BC,即可得出4∠α+∠β=180°.【解答】解:∵AC平分∠B′AC′,∴∠B'AC=∠C'AC,∵菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∴∠BAB'=∠CAC'=∠α,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠BAB'=∠DAC',∴∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,∵AD∥BC,∴∠B+∠BAD=180°,∴4∠α+∠β=180°,故选:C.33.(2022•嘉兴)“方胜”是中国古代妇女的一种首饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm【分析】根据正方形的性质、勾股定理求出BD,根据平移的概念求出BB′,计算即可.【解答】解:∵四边形ABCD为边长为2cm的正方形,∴BD==2(cm),由平移的性质可知,BB′=1cm,∴B′D=(2﹣1)cm,故选:D.34.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m2【分析】直接根据图形中外围面积和可得结论.【解答】解:如图,该垃圾填埋场外围受污染土地的面积=80×3×2+60×3×2+32π=(840+9π)m2.故选:B.35.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A. B. C.10 D.【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.36.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2 B. C. D.【分析】连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.设BF=2k,CG=3k.则AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,因为C,A′,B′共线,GA′∥FB′,推出=,推出=,可得y2﹣12ky+32k2=0,推出y=8k或y=4k(舍去),推出AE=DE=4k,再利用勾股定理求出GT,可得结论.【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C=CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.37.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为()A. B. C. D.【分析】如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,想办法求出BH,CG,可得结论.【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,∴EN=EM=MF=FN=a,∵四边形ENFM是正方形,∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,∵GT⊥TF,DF⊥DG,∴∠TGF=∠TFG=∠DFG=∠DGF=45°,∴TG=FT=DF=DG=a,∴CT=3a,CG==a,∵MH∥TG,∴△CMH∽△CTG,∴CM:CT=MH:TG=1:3,∴MH=a,∴BH=2a+a=a,∴==,故选:C.四边形综合题38.(2022•衢州)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.(1)求证:∠DBG=90°.(2)若BD=6,DG=2GE.①求菱形ABCD的面积.②求tan∠BDE的值.(3)若BE=AB,当∠DAB的大小发生变化时(0°<∠DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.【分析】(1)由菱形的性质得CB=AB,CD=AD,可证明△ABD≌△CBD,得∠CBD=∠ABC,而∠CBG=∠EBC,所以∠DBG=(∠ABC+∠EBC)=90°;(2)①连结AC交BD于点K,交DE于点L,由∠AKB=90°,AB=5,DK=BK=BD=3,根据勾股定理可求得AK=4,则AC=8,即可由S菱形ABCD=AC•BD求出菱形ABCD的面积;②先由∠DKL=∠DBG=90°证明AC∥BG,则==1,所以DL=GL=DG,再由DG=2GE得GE=DG,则DL=GL=GE,即可由CD∥AB,得==,可求得CL=AC=,所以KL=4﹣=,再求出tan∠BDE的值即可;(3)过点G作GT∥BC,交AE于点T,由∠DKL=∠DBG=90°可知,当∠DAB的大小发生变化时,始终都有BG∥AC,由△BGE∽△ALE得==1,所以EG=LG,同理可得DL=LG,再证明△ETG∽△EAD,得===,即可求得GT=,说明GT为定值,再求出ET的值即可.【解答】(1)证明:如图1,∵四边形ABCD是菱形,∴CB=AB,CD=AD,∵BD=BD,∴△ABD≌△CBD,∴∠CBD=∠ABD=∠ABC,∵∠CBG=∠EBG=∠EBC,∴∠DBG=∠CBD+∠CBG=(∠ABC+∠EBC)=×180°=90°.(2)解:①如图2,连结AC交BD于点K,交DE于点L,∵AC⊥BD,∴∠AKB=90°,∵AB=5,BD=6,∴BK=DK=BD=3,∴AK===4,∴CK=AK=4,∴AC=8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论