2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】_第1页
2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】_第2页
2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】_第3页
2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】_第4页
2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024-2025学年天津市津南区名校数学九上开学教学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是()A.①②③ B.②③④ C.①③④ D.①②③④2、(4分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个 B.2个 C.3个 D.4个3、(4分)如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为()A.55º B.60º C.65º D.75º4、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是()A.1 B.2 C.3 D.55、(4分)在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个 B.7个 C.8个 D.9个6、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是()A.甲 B.乙C.同时到达 D.无法确定7、(4分)菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是()A.4cm B.cm C.2cm D.2cm8、(4分)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.a=32,b=42,c=52 B.a=9,b=12,c=15C.∠A:∠B:∠C=5:2:3 D.∠C﹣∠B=∠A二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.10、(4分)已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.11、(4分)用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.12、(4分)正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.13、(4分)2﹣6+的结果是_____.三、解答题(本大题共5个小题,共48分)14、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲82867875乙73808582丙81828079(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶4∶2∶1的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照1∶2∶3∶4的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?15、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.16、(8分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?17、(10分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.(1)证明:;(2)判断与的位置关系,并证明你的结论;(3)求的长.18、(10分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.(1)在图①中,判断和形状.(填空)_______________________________________(2)在图②中,判断四边形的形状,并说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.20、(4分)化简:(2)2=_____.21、(4分)分解因式:2x2-8x+8=__________.22、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).23、(4分)如图,在正方形的外侧,作等边,则的度数是__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.(1)试说明△CEF是等腰三角形.(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.25、(10分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;⑴分别求出m与n的取值范围;⑵请化简:。26、(12分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

利用正方形的判定方法逐一分析判断得出答案即可.【详解】解:①对角线互相垂直且相等的平行四边形是正方形,故正确;②对角线互相垂直的矩形是正方形,故正确;③对角线相等的菱形是正方形,故正确;④对角线互相垂直平分且相等的四边形是正方形,故正确;故选:D.本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.2、C【解析】

连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;【详解】连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,∵△ABC是边长为3的等边三角形,S△ABC=∴S△ABD∴S△AEF=S△AEC=•S△ABD=故④错误,故选C.本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.3、D【解析】

首先根据,结合已知可得的度数,进而计算的度数.【详解】解:根据平角的性质可得又四边形为正方形在三角形DEC中四边形为平行四边形故选D.本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.4、B【解析】

因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,x,4,

处于中间位置的数是3,x,

那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,

平均数为(2+3+4+x)÷4,

∴(3+x)÷2=(2+3+4+x)÷4,

解得x=3,大小位置与3对调,不影响结果,符合题意;

(2)将这组数据从小到大的顺序排列后2,3,4,x,

中位数是(3+4)÷2=3.1,

此时平均数是(2+3+4+x)÷4=3.1,

解得x=1,符合排列顺序;

(3)将这组数据从小到大的顺序排列后x,2,3,4,

中位数是(2+3)÷2=2.1,

平均数(2+3+4+x)÷4=2.1,

解得x=1,符合排列顺序.

∴x的值为1、3或1.

故选B.本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.5、A【解析】

根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.6、B【解析】

设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。【详解】解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,而对于乙:解得:因为当a≠b时,(a+b)2>4ab,所以<1所以t甲>t乙,即甲先到达,故答案为B.本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.7、C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.8、A【解析】

由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】A.a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,故选A.本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(本大题共5个小题,每小题4分,共20分)9、3或6【解析】

先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,∵点C(0,6),∴OC=6,∴BC=6-b,在△DBC和△BAO中,∴△DBC≌△BAO(AAS),∴BC=OA,即6-b=b,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.10、0.26【解析】

首先根据平均数算出x的值,然后利用方差的公式进行计算.【详解】解得:x=3故方差为0.26本题考查数据方差的计算,务必记住方差计算公式为:11、三角形的三个内角都小于60°【解析】

熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12、【解析】

先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.【详解】解:∵直线y=x+1和y轴交于A1,

∴A1的坐标(0,1),即OA1=1,

∵四边形C1OA1B1是正方形,

∴OC1=OA1=1,

把x=1代入y=x+1得:y=2,

∴A2的坐标为(1,2),

同理,A3的坐标为(3,4),

∴An的坐标为(2n-1-1,2n-1),

∴的坐标是,

故答案为:.本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.13、【解析】

先把各根式化为最简二次根式,再合并同类项即可.【详解】原式=-2+2=3-2.故答案为:3-2.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)应该录取丙;(2)应该录取甲;(3)应该录取乙【解析】

(1)分别算出甲乙丙的平均数,比较即可;(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;

(3)由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】(1)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵80.5>80.25>80∴应该录取丙(2)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵82.1>81>79.1∴应该录取甲(3)甲的平均成绩:乙的平均成绩:丙的平均成绩:∵81.6>80.1>78.8∴应该录取乙.本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.15、投递快递总件数的月平均增长率是10%.【解析】

设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.【详解】解:设投递快递总件数的月平均增长率是x,依题意,得:30(1+x)2=36.3则1+x=±1.1解得:x1=0.1=10%,x2=−2.1(舍),答:投递快递总件数的月平均增长率是10%.考核知识点:一元二次方程的应用.理解增长率是关键.16、(1)证明见解析(2)添加AB=BC【解析】试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.考点:矩形的判定;平行四边形的判定与性质.17、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.【解析】

(1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;(2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;(3)求出EM、EN,然后利用勾股定理列式计算即可得解.【详解】解:(1)∵BE、CF是锐角△ABC的两条高,∴∠ABE+∠A=90°,∠ACF+∠A=90°,∴∠ABE=∠ACF;(2)MN垂直平分EF.证明:如图,连接EM、FM,∵BE、CF是锐角△ABC的两条高,M是BC的中点,∴EM=FM=BC,∵N是EF的中点,∴MN垂直平分EF;(3)∵EF=6,BC=24,∴EM=BC=×24=12,EN=EF=×6=3,由勾股定理得,MN=.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.18、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.【解析】

根据平行线的性质和折叠的性质解答即可;(2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.【详解】解:(1)和均为等腰三角形.∵DE∥BC,∴∠A′DE=∠BA′D,∠B=∠ADE,∵∠ADE=∠A′DE,∴∠B=∠BA′D,∴BD=A′D,∴为等腰三角形;同理可证CE=A′E,即为等腰三角形.(2)四边形为平行四边形.理由:、分别是、的中点,,.由旋转的性质可知,,四边形是平行四边形.本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】试题分析:此题考查了翻折变换、勾股定理及锐角三角函数的定义,解答本题的关键是掌握翻折变换前后对应边相等、对应角相等,难度一般.在RT△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的长度.∵AC=6,BC=8,∴AB==10,tanB=,由折叠的性质得,∠B=∠DAE,tanB=tan∠DAE=,AE=EB=AB=5,∴DE=AEtan∠DAE=.故答案为.考点:翻折变换(折叠问题).20、1.【解析】

根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.21、2(x-2)2【解析】

先运用提公因式法,再运用完全平方公式.【详解】:2x2-8x+8=.故答案为2(x-2)2.本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.22、①②④【解析】

根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为①②④.本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.23、【解析】

先求出的度数,即可求出.【详解】解:由题意可得,,故答案为:本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析(2)见解析【解析】

(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.【详解】解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠ACB=90°,∴∠CAB+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论