版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年陕西省商洛九上数学开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)直角三角形中,两直角边分别是6和8.则斜边上的中线长是()A. B. C. D.2、(4分)一次统计八(2)班若干名学生每分跳绳次数的频数分布直方图的次数(结果精确到个位)是()A.数据不全无法计算 B.103C.104 D.1053、(4分)如图所示,四边形的对角线和相交于点,下列判断正确的是()A.若,则是平行四边形B.若,则是平行四边形C.若,,则是平行四边形D.若,,则是平行四边形4、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米5、(4分)一个射手连续射靶10次,其中3次射中10环,3次射中9环,4次射中8环.则该射手射中环数的中位数和众数分别为()A.8,9 B.9,8 C.8.5,8 D.8.5,96、(4分)从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是()A.抽到的是单项式 B.抽到的是整式C.抽到的是分式 D.抽到的是二次根式7、(4分)点A(-2,5)在反比例函数的图像上,则该函数图像位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限8、(4分)一个多边形的内角和与外角和相等,则这个多边形的边数为()A.8 B.6 C.5 D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.10、(4分)如图,在平行四边形中,度,,,则______.11、(4分)一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为_______.12、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.13、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.三、解答题(本大题共5个小题,共48分)14、(12分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.15、(8分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.(1)当时,求关于工的函数表达式,(2)求点的坐标.(3)求高铁在时间段行驶的路程.16、(8分)某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)每件童装降价多少元时,能更多让利于顾客并且商家平均每天能赢利1200元.(2)要想平均每天赢利2000元,可能吗?请说明理由.17、(10分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:△ABG≌△AFG;(2)判断BG与CG的数量关系,并证明你的结论;(3)作FH⊥CG于点H,求GH的长.18、(10分)已知与成反比例,且当时,.(1)求关于的函数表达式.(2)当时,的值是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若一组数据的平均数为17,方差为2,则另一组数据的平均数和方差分别为()A.17,2 B.18,2 C.17,3 D.18,320、(4分)如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则BE的长为_______.21、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.22、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.23、(4分)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______二、解答题(本大题共3个小题,共30分)24、(8分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?25、(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.26、(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)当AP为何值时,四边形PMEN是菱形?并给出证明。
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边==10,
所以,斜边上的中线长=×10=1.
故选:C.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.2、C【解析】
根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);然后取每一小组中间的数值近似地作为该组内每位学生的每分钟跳绳次数,再用加权平均数求解即可.【详解】解:根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);所以这若干名学生每分钟跳绳次数的平均数=(62×2+87×4+112×6+137×2)÷15≈103.67≈104,故选C.本题考查学生读取频数分布直方图的能力和利用统计图获取信息的能力.对此类问题,必须认真观察题目所给的统计图并认真的思考分析,才能作出正确的判断,从而解决问题.3、D【解析】
若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.【详解】∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定ABCD是平行四边形.故选D.此题考查平行四边形的判定,解题关键在于掌握判定定理.4、B【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.5、B【解析】
根据中位数和众数的定义求解.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8;这10个数按大小顺序排列后中间两个数是1和1,所以这组数据的中位数是1.
故选:B.本题考查众数和中位数.掌握中位数和众数的定义是关键.6、D【解析】
根据题意找出下列事件中为确定事件,掌握单项式、整式、分式、二次根式的定义以此分析选项,采用排除法得出最终正确选项.【详解】A.不是单项式,错误;B.不是整式,错误;C.、、不是分式,错误;D.、、、都是二次根式,正确.故选D.此题考查单项式、整式、分式、二次根式,解题关键在于掌握单项式、整式、分式、二次根式的定义.7、D【解析】
根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.【详解】∵反比例函数的图像经过点(-2,5),∴k=(-2)×5=-10,∵-10<0,∴该函数位于第二、四象限,故选:D.本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.8、D【解析】
利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n,根据题意
(n-2)•180°=360°,
解得n=1.
故选:D.本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】在Rt△ABC中,∠A=30°,BC=1,∴AB=2BC=2,∵点D,E分别是直角边BC,AC的中点,∴DE=AB=1,故答案为:1.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10、【解析】
依据平行四边形的对角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB长.【详解】∵四边形ABCD是平行四边形,∴AO=AC=3cm.在Rt△ABO中,OB=6cm,AO=3cm,利用勾股定可得AB=.故答案为3.本题主要考查了平行四边形的性质、勾股定理,利用平行四边形的对角线互相平分求解三角形中某些线段的长度是解决这类问题通常的方法.11、【解析】
根据题意先画出树状图,求出所有出现的情况数,再根据概率公式即可得出答案.【详解】根据题意画树状图如下:共有12种情况,两张卡片上的数字之和大于5的有4种,则这两张卡片上的数字之和大于5的概率为;故答案为:.此题考查列表法与树状图法,解题关键在于题意画树状图.12、175°【解析】如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为175°.13、【解析】
人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。【详解】根据题意可列出此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式三、解答题(本大题共5个小题,共48分)14、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.【解析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).故答案为10;2.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.15、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.【详解】(1)当时,设关于的函数表达式是,,得,即当,关于的函数表达式是.(2)设段对应的函数解析式为,得即段对应的函数表达式为.当时,,即点的坐标为.(3)(千米),答:高铁在时段共行驶了千米.考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.16、(1)每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元;(2)不可能,理由详见解析.【解析】
(1)设每件童装降价x元,则销售量为(20+2x)件,根据总利润=每件利润销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论(2)设每件童装降价元,则销售量为(20+2y)件,根据总利润=每件利润销售数量,即可得出关于y的一元二次方程,由根的判别式A<0可得出原方程无解,进而即可得出不可能每天盈利2000元.【详解】(1)设每件童装降价元时,能更多让利于顾客并且商家平均每天能赢利1200元,得:∴,∵要更多让利于顾客∴更符合题意答:每件童装降价20元时,能更多让利于顾客并且商家平均每天能赢利1200元.(2)不可能;设每件桶童装降价元,则销售量为件,根据题意得:整理得:∵∴该方程无实数解∴不可能每天盈利2000元.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17、(1)见解析;(2)BG=CG;(3)GH=.【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.【详解】(1)∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中∵,∴Rt△ABG≌Rt△AFG(HL);(2)∵Rt△ABG≌Rt△AFG,∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG;(3)由(2)知BG=FG=CG=3,∵CE=4,∴GE=5,∵FH⊥CG,∴∠FHG=∠ECG=90°,∴FH∥EC,∴△FHG∽△ECG,则=,即=,解得GH=.本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.18、(1);(2)【解析】
(1)设(为常数,),把,代入求出k的值即可;(2)把代入(1)中求得的解析式即可求出的值.【详解】解:(1)与成反比例可知,可设(为常数,),当时,,解得,关于的函数表达式;(2)把代入,得.本题考查了待定系数法求反比例函数解析式,以及求反比例函数值,熟练掌握待定系数法是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、B【解析】
根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x1+1,x1+1,,xn+1的平均数为17,∴x1+1,x1+1,,xn+1的平均数为18,∵数据x1+1,x1+1,,xn+1的方差为1,∴数据x1+1,x1+1,,xn+1的方差不变,还是1;故选B.本题考查了方差与平均数,用到的知识点:如果一组数据x1,x1,,xn的平均数为,方差为S1,那么另一组数据ax1+b,ax1+b,,axn+b的平均数为a+b,方差为a1S1.20、4【解析】
延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.【详解】解:延长F至G,使CG=AE,连接DG、EF,如图所示:∵四边形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中点,∴BF=CF=3,设AE=CG=x,则EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.21、17【解析】
根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,故三边长为3,7,7故周长为17.此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.22、3或﹣3【解析】试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2.①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.23、100(1+x)2=179【解析】
由两次涨价的百分比平均每次为x,结合商品原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【详解】解:∵两次涨价平均每次的百分比为x,∴100(1+x)2=179.故答案为:100(1+x)2=179.本题考查了一元二次方程的应用.二、解答题(本大题共3个小题,共30分)24、解:(1)日销售量的最大值为120千克.(2)(3)第10天的销售金额多.【解析】试题分析:(1)观察图象,即可求得日销售量的最大值;(2)分别从0≤x≤12时与12<x≤20去分析,利用待定系数法即可求得小明家樱桃的日销售量y与上市时间x的函数解析式;(3)第10天和第12天在第5天和第15天之间,当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b,由点(5,32),(15,12)在z=kx+b的图象上,利用待定系数法即可求得樱桃价格与上市时间的函数解析式,继而求得10天与第12天的销售金额.试题解析:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k1x,∵直线y=k1x过点(12,120),∴k1=10,∴函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糖果屋幼儿园教案模板6篇
- 2024年建筑施工人员培训合同
- 《饲喂MSTN基因编辑牛肉对小鼠安全性的初步研究》
- 《原络配穴法结合情感区治疗中风后焦虑障碍的临床观察》
- 《绿色电力产业动态跟踪及趋势洞察月报(2023年12月)》范文
- 《可发性酚醛树脂结构改性及性能研究》
- 2024年仿真软件项目资金筹措计划书代可行性研究报告
- 2024年安装工程项目合同
- 2024年冷阴极材料项目投资申请报告代可行性研究报告
- 2024年房产装修改造补充合同
- 酒店装修施工组织设计方案
- 固定资产处置方案
- 大数据对智能能源的应用
- 血液透析预防体外循环凝血的策略护理课件
- 检验生殖医学科出科小结
- 公共危机管理案例分析 (2)课件
- 通信工程冬季施工安全培训
- 《神奇糖果店》教学课件
- 文明旅游专题知识讲座
- 手术室门急诊术后并发症统计表
- 图解2023《铸牢中华民族共同体意识》课件
评论
0/150
提交评论