




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chi-SquareTestsChapter11ObjectivesInthischapter,youlearn:Howandwhentousethechi-squaretestforcontingencytablesContingencyTablesContingencyTablesUsefulinsituationscomparingmultiplepopulationproportionsUsedtoclassifysampleobservationsaccordingtotwoormorecharacteristicsAlsocalledacross-classificationtable.DCOVA Left-Handedvs.Gender
DominantHand:Leftvs.Right Gender:Malevs.Female2categoriesforeachvariable,sothisiscalleda2x2tableSupposeweexamineasampleof300childrenContingencyTableExampleDCOVAContingencyTableExampleSampleresultsorganizedinacontingencytable:(continued)GenderHandPreferenceLeftRightFemale12108120Male2415618036264300120Females,12werelefthanded180Males,24werelefthandedsamplesize=n=300:DCOVA
2TestfortheDifferenceBetweenTwoProportionsIfH0istrue,thentheproportionofleft-handedfemalesshouldbethesameastheproportionofleft-handedmalesThetwoproportionsaboveshouldbethesameastheproportionofleft-handedpeopleoverallH0:π1=π2(Proportionoffemaleswhoareleft handedisequaltotheproportionof maleswhoarelefthanded)H1:π1≠π2(Thetwoproportionsarenotthesame)DCOVATheChi-SquareTestStatisticwhere:
fo=observedfrequencyinaparticularcell
fe=expectedfrequencyinaparticularcellifH0istrue
(Assumed:eachcellinthecontingencytablehasexpectedfrequencyofatleast5)TheChi-squareteststatisticis:DCOVADecisionRule
2
2αDecisionRule:If,rejectH0,otherwise,donotrejectH0Theteststatisticapproximatelyfollowsachi-squareddistributionwithonedegreeoffreedom0
RejectH0DonotrejectH0DCOVAComputingthe
OverallProportionHere:
120Females,12werelefthanded180Males,24werelefthandedi.e.,basedonall300childrentheproportionoflefthandersis0.12,thatis,12% Theoverallproportionis:DCOVAFindingExpectedFrequenciesToobtaintheexpectedfrequencyforlefthandedfemales,multiplytheaverageproportionlefthanded(p)bythetotalnumberoffemalesToobtaintheexpectedfrequencyforlefthandedmales,multiplytheaverageproportionlefthanded
(p)bythetotalnumberofmalesIfthetwoproportionsareequal,then
P(LeftHanded|Female)=P(LeftHanded|Male)=.12i.e.,wewouldexpect (.12)(120)=14.4femalestobelefthanded (.12)(180)=21.6malestobelefthandedDCOVAObservedvs.ExpectedFrequenciesGenderHandPreferenceLeftRightFemaleObserved=12Expected=14.4Observed=108Expected=105.6120MaleObserved=24Expected=21.6Observed=156Expected=158.418036264300DCOVAGenderHandPreferenceLeftRightFemaleObserved=12Expected=14.4Observed=108Expected=105.6120MaleObserved=24Expected=21.6Observed=156Expected=158.418036264300TheChi-SquareTestStatisticTheteststatisticis:DCOVADecisionRuleDecisionRule:If>3.841,rejectH0,otherwise,donotrejectH0Here,=0.7576<=3.841,sowedonotrejectH0andconcludethatthereisnotsufficientevidencethatthetwoproportionsaredifferentat=0.05
2
20.05=3.8410
0.05RejectH0DonotrejectH0DCOVAExtendthe
2testtothecasewithmorethantwoindependentpopulations:
2TestforDifferencesAmong
MoreThanTwoProportionsH0:π1=π2=…=πcH1:Notalloftheπjareequal(j=1,2,…,c)DCOVATheChi-SquareTestStatisticWhere:
fo=observedfrequencyinaparticularcellofthe2xctable
fe=expectedfrequencyinaparticularcellifH0istrue
(Assumed:eachcellinthecontingencytablehasexpectedfrequencyofatleast1)TheChi-squareteststatisticis:DCOVAComputingthe
OverallProportionTheoverallproportionis:Expectedcellfrequenciesfortheccategoriesarecalculatedasinthe2x2case,andthedecisionruleisthesame:Whereisfromthechi-squareddistributionwithc–1degreesoffreedomDecisionRule:If,rejectH0,otherwise,donotrejectH0DCOVA
2TestofIndependenceSimilartothe
2testforequalityofmorethantwoproportions,butextendstheconcepttocontingencytableswithrrowsandccolumnsH0:Thetwocategoricalvariablesareindependent (i.e.,thereisnorelationshipbetweenthem)H1:Thetwocategoricalvariablesaredependent (i.e.,thereisarelationshipbetweenthem)DCOVA
2TestofIndependencewhere:
fo=observedfrequencyinaparticularcelloftherxctable
fe=expectedfrequencyinaparticularcellifH0istrue
(Assumed:eachcellinthecontingencytablehasexpectedfrequencyofatleast1)TheChi-squareteststatisticis:(continued)DCOVAExpectedCellFrequenciesExpectedcellfrequencies:Where: rowtotal=sumofallfrequenciesintherow columntotal=sumofallfrequenciesinthecolumn n=overallsamplesizeDCOVADecisionRuleThedecisionruleisWhereisfromthechi-squaredistributionwith(r–1)(c–1)degreesoffreedomIf,rejectH0,otherwise,donotrejectH0DCOVAExampleThemealplanselectedby200studentsisshownbelow:ClassStandingNumberofmealsperweekTotal20/week10/weeknoneFresh.24321470Soph.22261260Junior1014630Senior14161040Total708842200DCOVAExampleThehypothesistobetestedis:(continued)H0:Mealplanandclassstandingareindependent (i.e.,thereisnorelationshipbetweenthem)H1:Mealplanandclassstandingaredependent (i.e.,thereisarelationshipbetweenthem)DCOVAClassStandingNumberofmealsperweekTotal20/wk10/wknoneFresh.24321470Soph.22261260Junior1014630Senior14161040Total708842200ClassStandingNumberofmealsperweekTotal20/wk10/wknoneFresh.24.530.814.770Soph.21.026.412.660Junior10.513.26.330Senior14.017.68.440Total708842200Observed:ExpectedcellfrequenciesifH0istrue:Exampleforonecell:Example:
ExpectedCellFrequencies(continued)DCOVAExample:TheTestStatisticTheteststatisticvalueis:(continued)=12.592fromthechi-squaredistributionwith(4–1)(3–1)=6degreesoffreedomDCOVAExample:
DecisionandInterpretation(continued)DecisionRule:If>12.592,rejectH0,otherwise,donotrejectH0Here,=0.709<=12.592,sodonotrejectH0
Conclusion:thereisnotsufficientevidencethatmealplanandclassstandingarerelatedat=0.05
2
20.05=12.5920
0.05RejectH0DonotrejectH0DCOVAChapterSummaryInthischapterwediscussed:Howandwhentousethechi-squaretestforcontingencytablesIntroductiontoMultipleRegressionChapter13ObjectivesInthischapter,youlearn:
HowtodevelopamultipleregressionmodelHowtointerprettheregressioncoefficientsHowtodeterminewhichindependentvariablestoincludeintheregressionmodelHowtousecategoricalindependentvariablesinaregressionmodelTheMultipleRegressionModelIdea:Examinethelinearrelationshipbetween1dependent(Y)&2ormoreindependentvariables(Xi)MultipleRegressionModelwithkIndependentVariables:Y-interceptPopulationslopesRandomErrorDCOVAMultipleRegressionEquationThecoefficientsofthemultipleregressionmodelareestimatedusingsampledataEstimated(orpredicted)valueofYEstimatedslopecoefficientsMultipleregressionequationwithkindependentvariables:EstimatedinterceptInthischapterwewilluseExcelandMinitabtoobtaintheregressionslopecoefficientsandotherregressionsummarymeasures.DCOVATwovariablemodelYX1X2SlopeforvariableX1SlopeforvariableX2MultipleRegressionEquation(continued)DCOVAAdistributoroffrozendessertpieswantstoevaluatefactorsthoughttoinfluencedemandDependentvariable:Piesales(unitsperweek)Independentvariables:Price(in$)
Advertising($100’s)Dataarecollectedfor15weeksExample:
2IndependentVariablesDCOVAPieSalesExampleSales=b0+b1(Price) +b2(Advertising)WeekPieSalesPrice($)Advertising($100s)13505.503.324607.503.333508.003.044308.004.553506.803.063807.504.074304.503.084706.403.794507.003.5104905.004.0113407.203.5123007.903.2134405.904.0144505.003.5153007.002.7Multipleregressionequation:DCOVAExcelMultipleRegressionOutputRegressionStatisticsMultipleR0.72213RSquare0.52148AdjustedRSquare0.44172StandardError47.46341Observations15ANOVA
dfSSMSFSignificanceFRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888DCOVAMinitabMultipleRegressionOutputTheregressionequationisSales=307-25.0Price+74.1Advertising
Predictor
Coef
SECoef
T
PConstant 306.50
114.302.68
0.020Price -24.98
10.83
-2.31
0.040Advertising 74.13
25.97
2.85
0.014
S=47.4634
R-Sq=52.1%
R-Sq(adj)=44.2%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
2
29460
14730
6.54
0.012ResidualError
12
27033
2253Total
14
56493DCOVATheMultipleRegressionEquationb1=-24.975:saleswilldecrease,onaverage,by24.975piesperweekforeach$1increaseinsellingprice,netoftheeffectsofchangesduetoadvertisingb2=74.131:saleswillincrease,onaverage,by74.131piesperweekforeach$100increaseinadvertising,netoftheeffectsofchangesduetopricewhere SalesisinnumberofpiesperweekPriceisin$Advertisingisin$100’s.DCOVAUsingTheEquationtoMakePredictionsPredictsalesforaweekinwhichthesellingpriceis$5.50andadvertisingis$350:Predictedsalesis428.62piesNotethatAdvertisingisin$100s,so$350meansthatX2=3.5DCOVAPredictionsinExcelusingPHStatPHStat|regression|multipleregression…Checkthe“confidenceandpredictionintervalestimates”boxDCOVAInputvaluesPredictionsinPHStat(continued)
PredictedYvalue<ConfidenceintervalforthemeanvalueofY,giventheseXvaluesPredictionintervalforanindividualYvalue,giventheseXvaluesDCOVAPredictionsinMinitabInputvaluesPredictedValuesforNewObservations
NewObs
Fit
SEFit
95%CI
95%PI
1
428.6
17.2
(391.1,466.1)
(318.6,538.6)
ValuesofPredictorsforNewObservations
NewObs
Price
Advertising
1
5.50
3.50ConfidenceintervalforthemeanvalueofY,giventheseXvaluesPredictionintervalforanindividualYvalue,giventheseXvaluesDCOVATheCoefficientofMultipleDetermination,r2ReportstheproportionoftotalvariationinYexplainedbyallXvariablestakentogetherDCOVARegressionStatisticsMultipleR0.72213RSquare0.52148AdjustedRSquare0.44172StandardError47.46341Observations15ANOVA
dfSSMSFSignificanceFRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.7088852.1%ofthevariationinpiesalesisexplainedbythevariationinpriceandadvertisingMultipleCoefficientof
DeterminationInExcelDCOVAMultipleCoefficientof
DeterminationInMinitabTheregressionequationisSales=307-25.0Price+74.1Advertising
Predictor
Coef
SECoef
T
PConstant 306.50
114.302.68
0.020Price -24.98
10.83
-2.31
0.040Advertising 74.13
25.97
2.85
0.014
S=47.4634
R-Sq=52.1%
R-Sq(adj)=44.2%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
2
29460
14730
6.54
0.012ResidualError
12
27033
2253Total
14
5649352.1%ofthevariationinpiesalesisexplainedbythevariationinpriceandadvertisingDCOVAAdjustedr2r2neverdecreaseswhenanewXvariableisaddedtothemodelThiscanbeadisadvantagewhencomparingmodelsWhatistheneteffectofaddinganewvariable?WeloseadegreeoffreedomwhenanewXvariableisaddedDidthenewXvariableaddenoughexplanatorypowertooffsetthelossofonedegreeoffreedom?DCOVAShowstheproportionofvariationinYexplainedbyallXvariablesadjustedforthenumberofX
variablesused
(wheren=samplesize,k=numberofindependentvariables)PenalizesexcessiveuseofunimportantindependentvariablesSmallerthanr2UsefulincomparingamongmodelsAdjustedr2(continued)DCOVARegressionStatisticsMultipleR0.72213RSquare0.52148AdjustedRSquare0.44172StandardError47.46341Observations15ANOVA
dfSSMSFSignificanceFRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.7088844.2%ofthevariationinpiesalesisexplainedbythevariationinpriceandadvertising,takingintoaccountthesamplesizeandnumberofindependentvariablesAdjustedr2inExcelDCOVAAdjustedr2inMinitabTheregressionequationisSales=307-25.0Price+74.1Advertising
Predictor
Coef
SECoef
T
PConstant 306.50
114.302.68
0.020Price -24.98
10.83
-2.31
0.040Advertising 74.13
25.97
2.85
0.014
S=47.4634
R-Sq=52.1%
R-Sq(adj)=44.2%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
2
29460
14730
6.54
0.012ResidualError
12
27033
2253Total
14
5649344.2%ofthevariationinpiesalesisexplainedbythevariationinpriceandadvertising,takingintoaccountthesamplesizeandnumberofindependentvariablesDCOVAFTestforOverallSignificanceoftheModelShowsifthereisalinearrelationshipbetweenalloftheXvariablesconsideredtogetherandYUseF-teststatisticHypotheses:H0:β1=β2=…=βk=0(nolinearrelationship)H1:atleastoneβi≠0(atleastoneindependent variableaffectsY)
IstheModelSignificant?DCOVAFTestforOverallSignificanceTeststatistic:
whereFSTAThasnumeratord.f.=kand denominatord.f.=(n–k-1)
DCOVARegressionStatisticsMultipleR0.72213RSquare0.52148AdjustedRSquare0.44172StandardError47.46341Observations15ANOVA
dfSSMSFSignificanceFRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888(continued)FTestforOverallSignificanceInExcelWith2and12degreesoffreedomP-valuefortheFTestDCOVAFTestforOverallSignificanceInMinitabTheregressionequationisSales=307-25.0Price+74.1Advertising
Predictor
Coef
SECoef
T
PConstant 306.50
114.302.68
0.020Price -24.98
10.83
-2.31
0.040Advertising 74.13
25.97
2.85
0.014
S=47.4634
R-Sq=52.1%
R-Sq(adj)=44.2%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
2
29460
14730
6.54
0.012ResidualError
12
27033
2253Total
14
56493With2and12degreesoffreedomP-valuefortheFTestDCOVAH0:β1=β2=0H1:β1andβ2notbothzero
=.05df1=2df2=12TestStatistic:Decision:Conclusion:SinceFSTATteststatisticisintherejectionregion(p-value<.05),rejectH0ThereisevidencethatatleastoneindependentvariableaffectsY0
=.05F0.05=3.885RejectH0DonotrejectH0CriticalValue:F0.05=3.885FTestforOverallSignificance(continued)FDCOVATwovariablemodelYX1X2YiYi<x2ix1iThebestfitequationisfoundbyminimizingthesumofsquarederrors,e2SampleobservationResidualsinMultipleRegressionResidual=ei=(Yi–Yi)<DCOVAMultipleRegressionAssumptionsAssumptions:TheerrorsarenormallydistributedErrorshaveaconstantvarianceThemodelerrorsareindependentei=(Yi–Yi)<Errors(residuals)fromtheregressionmodel:DCOVAResidualPlotsUsed
inMultipleRegressionTheseresidualplotsareusedinmultipleregression:Residualsvs.YiResidualsvs.X1iResidualsvs.X2iResidualsvs.time(iftimeseriesdata)<UsetheresidualplotstocheckforviolationsofregressionassumptionsDCOVAUsettestsofindividualvariableslopesShowsifthereisalinearrelationshipbetweenthevariableXjandYholdingconstanttheeffectsofotherXvariablesHypotheses:H0:βj=0(nolinearrelationship)H1:βj≠0(linearrelationshipdoesexist betweenXjandY)AreIndividualVariablesSignificant?DCOVAH0:βj=0(nolinearrelationshipbetweenXjandY)H1:βj≠0(linearrelationshipdoesexist betweenXjandY)TestStatistic: (df=n–k–1)AreIndividualVariablesSignificant?(continued)DCOVARegressionStatisticsMultipleR0.72213RSquare0.52148AdjustedRSquare0.44172StandardError47.46341Observations15ANOVA
dfSSMSFSignificanceFRegression229460.02714730.0136.538610.01201Residual1227033.3062252.776Total1456493.333
CoefficientsStandardErrortStatP-valueLower95%Upper95%Intercept306.52619114.253892.682850.0199357.58835555.46404Price-24.9750910.83213-2.305650.03979-48.57626-1.37392Advertising74.1309625.967322.854780.0144917.55303130.70888tStatforPriceistSTAT=-2.306,withp-value.0398tStatforAdvertisingistSTAT=2.855,withp-value.0145(continued)AreIndividualVariablesSignificant?ExcelOutputDCOVAAreIndividualVariablesSignificant?MinitabOutputTheregressionequationisSales=307-25.0Price+74.1Advertising
Predictor
Coef
SECoef
T
PConstant 306.50
114.302.68
0.020Price -24.98
10.83
-2.31
0.040Advertising 74.13
25.97
2.85
0.014
S=47.4634
R-Sq=52.1%
R-Sq(adj)=44.2%
AnalysisofVariance
Source
DF
SS
MS
F
PRegression
2
29460
14730
6.54
0.012ResidualError
12
27033
2253Total
14
56493tStatforPriceistSTAT=-2.31,withp-value.040tStatforAdvertisingistSTAT
=2.85,withp-value.014DCOVAd.f.=15-2-1=12=.05t/2=2.1788InferencesabouttheSlope:
t
TestExampleH0:βj=0H1:βj
0Theteststatisticforeachvariablefallsintherejectionregion(p-values<.05)ThereisevidencethatbothPriceandAdvertisingaffectpiesalesat
=.05FromtheExceloutput:RejectH0foreachvariableDecision:Conclusion:RejectH0RejectH0a/2=.025-tα/2DonotrejectH00tα/2a/2=.025-2.17882.1788ForPricetSTAT=-2.306,withp-value.0398ForAdvertisingtSTAT
=2.855,withp-value.0145DCOVAConfidenceIntervalEstimate
fortheSlopeConfidenceintervalforthepopulationslopeβjExample:Forma95%confidenceintervalfortheeffectofchangesinprice(X1)onpiesales:-24.975±(2.1788)(10.832)Sotheintervalis(-48.576,-1.374)(Thisintervaldoesnotcontainzero,sopricehasasignificanteffectonsales)
CoefficientsStandardErrorIntercept306.52619114.25389Price-24.9750910.83213Advertising74.1309625.96732wherethas(n–k–1)d.f.Here,thas(15–2–1)=12d.f.DCOVAConfidenceIntervalEstimate
fortheSlopeConfidenceintervalforthepopulationslopeβjExample:Exceloutputalsoreportstheseintervalendpoints:Weeklysalesareestimatedtobereducedbybetween1.37to48.58piesforeachincreaseof$1inthesellingprice,holdingtheeffectofadvertisingconstant
CoefficientsStandardError…Lower95%Upper95%Intercept306.52619114.25389…57.58835555.46404Pric
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《婴幼儿常见疾病的识别与预防》课件-婴幼儿生长发育
- 2025劳动者劳务合同范本
- 2025关于海上货物运输租赁合同
- 2025年劳动合同试用期限是多久
- 2025年关于跨国公司合同范本
- 小学一年级教学设计改进后
- 2025年BIM工程师之BIM工程师题库检测试卷B卷附答案
- 《内分泌系统调节》课件
- 儿童攻击行为的临床护理
- 上海初一科学试卷及答案
- 部编版六年级下册语文第五单元 主题训练卷
- 《教育系统重大事故隐患判定指南》知识培训
- 49-提高临边防护栏杆有效合格率(清泉建筑)
- 2025年新高考语文模拟考试试卷(五)
- 实习生补充协议范例模板
- 2025年高考数学基础知识篇(核心知识背记手册)
- 药品经营质量管理规范
- 专项24-正多边形与圆-重难点题型
- 通信工程勘察设计管理办法
- 数据库原理及应用教程(第5版) (微课版)课件 第4章 关系型数据库理论
- (完整文本版)日文履历书(文本テンプレート)
评论
0/150
提交评论