2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题【含答案】_第1页
2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题【含答案】_第2页
2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题【含答案】_第3页
2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题【含答案】_第4页
2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年齐齐哈尔市重点中学九上数学开学学业质量监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁2、(4分)对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c3、(4分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个 B.2个 C.3个 D.4个4、(4分)下列方程,是一元二次方程的是()①,②,③,④A.①② B.①②④ C.①③④ D.②④5、(4分)如图,、分别是平行四边形的边、所在直线上的点,、交于点,请你添加一个条件,使四边形是平行四边形,下列选项中不能推断四边形是平行四边形的是()A. B. C. D.6、(4分)如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.137、(4分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.18、(4分)如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知m是关于x的方程的一个根,则=______.10、(4分)若ab,则32a__________32b(用“>”、“”或“<”填空).11、(4分)计算:________.12、(4分)若是正整数,则整数的最小值为__________________。13、(4分)分解因式:m2-9m=______.三、解答题(本大题共5个小题,共48分)14、(12分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校938276777689898983878889849287897954889290876876948476698392乙校846390897192879285617991849292737692845787898894838580947290(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;平均数中位数众数甲校83.48789乙校83.2(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.15、(8分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.(1)求证:△AOB是等边三角形;(2)求∠BOE的度数.16、(8分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.17、(10分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O在RtΔABC内部时.①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.18、(10分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.

(1)探究与的数量关系并加以证明;

(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;

(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________20、(4分)在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD是平行四边形,请添加一个条件,使得▱ABCD是矩形.”经过思考,小明说:“添加AC=BD.”小红说:“添加AC⊥BD.”你同意______的观点,理由是______.21、(4分)换元法解方程时,可设,那么原方程可化为关于的整式方程为_________.22、(4分)一组数据:,,0,1,2,则这组数据的方差为____.23、(4分)方程的解为:___________.二、解答题(本大题共3个小题,共30分)24、(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6min发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前走,小亮取回借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆。已知骑车的速度是步行速度的2倍,如图是小亮和姐姐距离家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题:(1)小亮在家停留了多长时间?(2)求小亮骑车从家出发去图书馆时距家的路程y(m)与出发时间x(min)之间的函数解析式.25、(10分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.(1)求(元)与(套)的函数关系式.(2)有几种生产方案?(3)如何生产使该厂所获利润最大?最大利润是多?26、(12分)如图,在矩形ABCD中,,,E是AB上一点,连接CE,现将向上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,_____;当点P在矩形内部时,BE的取值范围是_____.(2)当点E与点A重合时:①画出翻折后的图形(尺规作图,保留作图痕迹);②连接PD,求证:;(3)如图,当点Р在矩形ABCD的对角线上时,求BE的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<考点:1.方差;2.算术平均数.2、D【解析】

用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3、A【解析】

由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t,可得出答案.【详解】由图象可知A、B两城市之间的距离为300km,故①正确;甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选A.本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.4、D【解析】

只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.结合题意进行分析即可得到答案.【详解】①,含有两个未知数,不是一元二次方程;②,是一元二次方程;③不是一元二次方程;④,是一元二次方程;由此知②④是一元二次方程,故选D.本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.5、A【解析】

根据平行四边形的性质得出AF∥CE,再根据平行四边形的判定定理得出即可.【详解】∵四边形是平行四边形,∴,,即.A、时,一组对边平行,另一组对边相等不能判定四边形为平行四边形,故错误;B、,又∵,∴四边形为平行四边形;C、∵,,∴四边形是平行四边形;D、∵,,∴四边形是平行四边形.故选:A.本题考查了平行四边形的性质和判定,能熟记平行四边形的性质和判定定理是解此题的关键,答案不唯一.6、D【解析】

ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.7、B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,所以(4)错误,故选B.8、A【解析】

求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.【详解】把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,∴直线y=x,与反比例函数y=,,解得:,∴A(-3,-5)故选:A.考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】试题分析:∵m是关于x的方程的一个根,∴,∴,∴=1,故答案为1.考点:一元二次方程的解;条件求值.10、【解析】

根据不等式的性质进行判断即可【详解】解:∵ab,∴2a2b∴32a32b故答案为:<本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11、【解析】

原式化简后,合并即可得到结果.【详解】解:原式=,故答案为:.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.12、1.【解析】

是正整数,则1n一定是一个完全平方数,即可求出n的最小值.【详解】解:∵是正整数,∴1n一定是一个完全平方数,∴整数n的最小值为1.故答案是:1.本题考查了二次根式的定义,理解是正整数的条件是解题的关键.13、m(m-9)【解析】

直接提取公因式m即可.【详解】原式=m(m-9).故答案为:m(m-9).此题主要考查了提公因式法分解因式,关键是正确找出公因式.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)见解析;(4)见解析.【解析】【分析】(1)根据提供数据,整理出各组的频数,再画图;(2)由数据可知,乙校中位数是86,众数是1;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.【详解】解:(1)补全条形统计图,如下图.(2)86;1.(3)答案不唯一,理由需包含数据提供的信息.如:甲校平均数最高;乙校众数最高;(4)答案不唯一,理由需支撑推断结论.如:甲校成绩比较好,因为平均数最高,且有一半的人分数大于87.【点睛】本题考核知识点:数据的代表.解题关键点:从统计图表获取信息.15、(1)证明见解析;(2)∠BOE=75°.【解析】

(1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;(2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等边三角形和等腰直角三角形的性质得到OB=BE,然后可求出∠BOE.【详解】(1)证明:∵四边形ABCD是矩形,∴OA=OB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∵∠CAE=15°,∴∠BAC=60°,∴△AOB是等边三角形.(2)∵△AOB是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵∠BAE=∠BEA=45°∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,角平分线的性质,等腰三角形的判定等知识点.16、见解析.【解析】

根据“ASA”证明ΔAOE≅ΔCOF,即可证明OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD//BC.∴∠OAE=∠OCF.在ΔOAE和ΔOCF,∠OAE=∠OCFOA=OC∴ΔAOE≅ΔCOF,∴OE=OF.本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.17、(1)①补全图形,如图一,见解析;②猜想DE=BC.证明见解析;(2)∠AED=30°或15°.【解析】

(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【详解】(1)①补全图形,如图一,②猜想DE=BC.如图,连接OD交BC于点F,连接AF在△BDF和△COF中,∠DBF=∠OCF∴△BDF≌ΔCOF∴DF=OF,BF=CF∴F分别为BC和DO的中点∵∠BAC=90°,F为BC的中点,∴AF=12∵OA=AE,F为BC的中点,∴AF=12∴DE=BC(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°-15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】

(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;

(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;

(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.【详解】(1)OE=OF,理由如下:

∵MN∥BC,

∴∠OEC=∠BCE,∠OFC=∠DCF,

∵CE平分∠BCA,CF平分∠ACD,

∴∠OCE=∠BCE,∠OCF=∠DCF,

∴∠OCE=∠OEC,∠OCF=∠OFC,

∴OE=OC,OF=OC,

∴OE=OF;

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.

∵当点O运动到AC的中点时,AO=CO,

又EO=FO,

∴四边形AECF为平行四边形,

又CE为∠ACB的平分线,CF为∠ACD的平分线,

∴∠BCE=∠ACE,∠ACF=∠DCF,

∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,

即∠ECF=90°,

∴四边形AECF是矩形;

(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:

∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,

∵MN∥BC,

当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,

∴AC⊥EF,

∴四边形AECF是正方形.此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰三角形的判定、平行线的性质以及角平分线的定义,解题关键在于掌握各判定定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、或或【解析】

分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.【详解】解:I.当时,如图1所示.,,,为等边三角形,;II.当时,如图2所示.在中,,,,.在中,,,或.故答案为12或或.本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.20、小明对角线相等的平行四边形是矩形.【解析】

根据矩形的判定定理可知谁的说法是正确的,本题得以解决.【详解】解:根据是对角线相等的平行四边形是矩形,故小明的说法是正确的,根据对角线互相垂直的平行四边形是菱形,故小红的说法是错误的,故答案为小明、对角线相等的平行四边形是矩形.本题考查矩形的判定,解题的关键是明确矩形的判定定理的内容.21、【解析】

换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是设,换元后整理即可求得.【详解】解:把

代入方程得:,

方程两边同乘以y得:.

故答案为:本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.22、2【解析】

先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(-1-2+0+1+2)÷5=0,则这组数据的方差为:.本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23、,【解析】

根据解一元二次方程的方法,即可得到答案.【详解】解:∵,∴,∴,,故答案为:,;本题考查了解一元二次方程的方法,解题的关键是掌握解方程的方法和步骤.二、解答题(本大题共3个小题,共30分)24、(1)小亮在家停留了1min;(2).【解析】【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题.【详解】(1)步行速度:300÷6=50m/min,单车速度:2×50=100m/min,单车时间:3000÷100=30min,40-30=10,∴C(10,0),∴A到B是时间==3min,∴B(9,0),∴BC=1,∴小亮在家停留了1分钟;(2)设解析式为y=kx+b,将C(10,0)和D(40,300)代入得,解得,所以.【点睛】本题考查一次函数的应用、路程、速度、时间之间的关系等知识,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.25、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.【解析】

(1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;(2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;(3)一次函数的增减性,求最值即可.【详解】解:(1)由题意可知:y=50x+45(80-x)=5x+3600即(元)与(套)的函数关系式为y=5x+3600;(2)由题意可知:解得:故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论