2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】_第1页
2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】_第2页
2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】_第3页
2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】_第4页
2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年临沧市重点中学九上数学开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定2、(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,这四位同学写出的结论中不正确的是()A.小青 B.小何 C.小夏 D.小雨3、(4分)若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等4、(4分)如图,△ABC中,AB=6,AC=4,AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE为()A.8.5 B.8 C.7.5 D.55、(4分)小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米6、(4分)菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分7、(4分)一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.138、(4分)如图,绕点逆时针旋转得到,若,,则的度数是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.10、(4分)甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间关于行驶速度的函数表达式是_____.11、(4分)如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.12、(4分)在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。13、(4分)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,则甲、乙两名同学成绩更稳定的是.三、解答题(本大题共5个小题,共48分)14、(12分)如图,把矩形放入平面直角坐标系中,使分别落在轴的正半轴上,其中,对角线所在直线解析式为,将矩形沿着折叠,使点落在边上的处.(1)求点的坐标;(2)求的长度;(3)点是轴上一动点,是否存在点使得的周长最小,若存在,请求出点的坐标,如不存在,请说明理由.15、(8分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)16、(8分)已知A(0,2),B(4,0),C(6,6)(1)在图中的直角坐标系中画出△ABC;(2)求△ABC的面积.17、(10分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.18、(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)20、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)21、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性_________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).22、(4分)多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.23、(4分)在△ABC中,AB=17cm,AC=10cm,BC边上的高等于8cm,则BC的长为_____cm.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点(1)求该反比例函数的表达式;(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.①求的值;②判断与的位置关系,并说明理由;(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.25、(10分)二次根式计算:(1);(2);(3)()÷;(4).26、(12分)已知一次函数图象经过点(3,5),(-4,-9)两点.(1)求一次函数解析式;(2)求这个一次函数图象和x轴、y轴的交点坐标.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵30<36,∴乙组比甲组的成绩稳定.故选B.2、B【解析】

根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.【详解】∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的结论正确),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED=S△ADC=S平行四边形ABCD,∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),故选B.本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.3、D【解析】

试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.4、D【解析】

延长BA、CD交于F,根据等腰三角形的判定定理和性质定理得到AF=AC,CD=DF,根据三角形中位线定理得到答案.【详解】延长BA、CD交于F,∵AD是∠BAC的外角平分线,CD⊥AD,∴AF=AC,CD=DF,∴BF=BA+AF=BA+AC=10,∵CD=DF,点E是BC的中点,∴ED=12BF=5故选:D.此题考查三角形中位线定理,等腰三角形的判定与性质,解题关键在于作辅助线5、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.6、A【解析】

根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.7、C【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.

解答:360°÷30°=1.

故选C.

“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.8、C【解析】

根据旋转的性质和三角形内角和180度求出<COD度数,再利用旋转角减去LCOD度数即可。【详解】解:根据旋转的性质可知:∠C=∠A=110°在△COD中,∠COD=180°-110°-40°=30°旋转角∠AOC=85°,所以∠α=85°-30°-55°故选:C.本题主要考查了旋转的性质,解题的关键是找准旋转角.二、填空题(本大题共5个小题,每小题4分,共20分)9、7,1【解析】

由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.10、【解析】

根据实际意义,写出函数的解析式即可.【详解】解:根据题意有:;故与之间的函数图解析式为,故答案为:.本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11、1【解析】

根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.【详解】解:根据题意得:∠BAC=90°,AB=160米,AC=120米,

在Rt△ABC中,BC===1米.

故答案为:1.本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.12、y=-2x-2【解析】

利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.【详解】将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.13、乙【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴甲、乙两名同学成绩更稳定的是乙.三、解答题(本大题共5个小题,共48分)14、(1);(2);(3),见解析.【解析】

(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=6,BD=AB=10,CD==8,OD=10-8=2,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【详解】解:,四边形是矩形,,代入得到直线的解析式为令,得到.在中,,设在中,如图作点关于轴的对称点,连接交轴于,此时的周长最小.设直线的解析式为,则有,解得:直线的解析式为本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.15、(1)1;(2)凯舟,数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.【解析】

(1)样本估计总体,样本中优秀人数占调查人数的,估计480人的得优秀;(2)可从中位数、众数的角度进行分析得出答案.【详解】解:整理的表格如下:(1)480×=1人,故答案为:1.(2)根据以下表格可知:根据整理后的数据,我同意凯舟的说法,数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.故答案为:凯舟;数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.考查数据收集和整理能力,频数分布表的制作,平均数、中位数、众数的意义以及用样本估计总体的统计方法,理解意义,掌握方法是解决问题的前提和基础.16、(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【解析】

(1)在坐标系内描出各点,再顺次连接即可;(2)根据△ABC的面积等于正方形的面积减去3个三角形的面积求出即可.【详解】解:(1)在平面直角坐标系中画出△ABC如图所示:(2)△ABC的面积=6×6-×4×2-×2×6-×4×6=36-4-6-12=1.故答案为:(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点,是解题的关键.17、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1)连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)∵抛物线过点A(1,0)和B(1,0)(2)∵∴点C为线段DE中点设点E(a,b)∵0<m<1,∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E纵坐标的范围为(1)连结BD,过点D作x轴的垂线交BC于点H∵CE=CD∴H(m,-m+1)∴当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.18、(1)60;(2)图形见解析,“基本了解”部分所对应扇形的圆心角的大小为90°.【解析】

(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数;

(2)由(1)可求得了解的人数,继而补全折线统计图;求得扇形统计图中“基本了解”部分所对应扇形的圆心角;【详解】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);“了解”的人数为:(人);补全统计图,如图所示:扇形统计图中“基本了解”部分所对应扇形的圆心角为:一、填空题(本大题共5个小题,每小题4分,共20分)19、抽样调查.【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.20、(1-x)2【解析】

根据题意即可列出代数式.【详解】∵某种手机每部售价为元,如果每月售价的平均降低率为,则一个月后的售价为(1-x)故两个月后的售价为(1-x)2此题主要考查列代数式,解题的关键是根据题意找到数量关系.21、小于【解析】

根据图形中的数据即可解答本题.【详解】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,

∴凸面向上”的可能性小于“凹面向上”的可能性.,

故答案为:小于.本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.22、61【解析】

将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【详解】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n.∴.故答案为:6;1.23、9或1【解析】

利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况求出BC的长度.【详解】解:过点A作AD⊥BC于D,由勾股定理得,BD==15(cm),CD==6(cm),如图1,BC=CD+BD=1(cm),如图2,BC=BD﹣CD=9(cm),故答案为:9或1.本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点在于要分情况讨论.二、解答题(本大题共3个小题,共30分)24、(1);(2)①;②;(3).【解析】

(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;

(2)①先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论