版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3.1离散型随机变量的均值北师大版(2019)选择性必修一学习目标1.通过实例理解离散型随机变量的均值的含义,了解随机变量的均值与样本均值的区别与联系.2.能计算简单离散型随机变量的均值,并能解决一些实际问题.3.体会运用离散型随机变量的均值思想描述和分析某些随机现象的方法,在简单应用中培养学生分析和解决问题的能力.学习重点学习难点离散型随机变量均值的含义及其应用.离散型随机变量均值的含义及其应用.新课导入
已知在10件产品中有2件不合格品.从这10件产品中任取3件,用X表示取得产品中的不合格品的件数.我们可求得X的分布列如表:现在我们关心,取3件该产品时,平均会取到几件不合格品?那么,怎样的一个数能够"代表"这个随机变量取值的平均水平呢?新课学习问题1:已知在10件产品中有2件不合格品,从这10件产品中任取3件,用X表示取得产品中不合格品的件数,求X的分布列.问题2:在问题1的条件下,从这10件产品中任取3件,平均会取到几件不合格品?可否根据分布列得到一个数,这个数能“代表”这个随机变量取值的平均水平呢?探究:由于随机变量X可能的取值为0,1,2.可否将三者的算术平均“1”“代表”这个随机变量的平均水平呢?为什么?问题3:设有12个西瓜,其中有4个质量是5kg,3个质量是6kg,5个质量是7kg,求这12个西瓜的平均质量.类比问题3的方法,给出问题2的解决方法.思考1:用上述方法求得随机变量X的平均取值是否合理?
合理,这种取平均值的方法,考虑到了不同变量在总体中的比例份额,变量所占份额越大,对整组数据的平均数影响越大.思考2:抽出的不合格品的平均值是否可以是小数?可以,这个平均值的意义在于告诉我们抽出的不合格品最有可能出现的一个值,作用在于对结果的估计,得到的结果可能是与它接近的一个整数.数学期望概念理解(1)均值EX刻画的是X取值的“中心位置”,反映了离散型随机变量X取值的平均水平,是随机变量X的一个重要特征.(2)均值EX是随机变量X取各个值的加权平均,由X的分布列完全确定.问题5:随机变量的均值与样本均值的联系与区别是什么?
随机变量的均值是一个常数,而样本均值是一个随机变量,样本均值随样本的变化而变化,这是两个均值的根本区别,在随机变量均值未知的情况下,通常用随机变量的观测值的平均值估计随机变量的均值.思考交流举例说明不同的分布会有相同的均值.结论例题来了解:解:思考交流结论例3
一个袋子里装有除颜色外完全相同的3个红球和2个黄球,从中同时取出2个球,则取出的红球个数的均值是多少?解:求离散型随机变量X的均值的步骤:例4
根据气象预报,某地区近期暴发小洪水的概率为0.25,暴发大洪水的概率为0.01.该地区某工地上有一台大型设备,为保护设备,有以下3种方案:方案1:运走设备,搬运费为3800元.方案2:建一保护围墙,建设费为2000元,但围墙只能防小洪水.方案3:不采取措施,希望不发生洪水,此时遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.试比较哪一种方案好.解:为什么可以通过比较均值作出决策?
离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023学年山东省青岛六十七中高一(上)期中语文试卷
- 安徽省宿州市示范重点中学2024-2025学年高三(上)期中教学质量检测物理试卷(含答案)
- 法制故事网上阅读活动阅读投稿流程教学课件
- 中医护理基础知到智慧树章节测试课后答案2024年秋深圳职业技术大学
- 河南省安阳市滑县第二高级中学2025届高考英语必刷试卷含解析
- 江苏省盐城市滨海县八滩中学2025届高考仿真模拟英语试卷含解析
- 两个人合伙做生意合同范本
- 放射人员协议书
- 护理培训管理教学课件教学课件教学
- 六年级作文课件教学
- 芳疗实证全书
- 政治经济学智慧树知到课后章节答案2023年下宁波大学
- 减压孔板计算
- 城市综合管廊规划设计要点
- 反恐培训内容
- 皮带滚筒数据标准
- 学习解读新制定《无障碍环境建设法》专题PPT
- 全北京海淀区2022年八年级数学上期末试卷含答案
- 2023年钢制门安装技术施工方案
- 香文化与养生知到章节答案智慧树2023年浙江农林大学
- 嵩县嵩源矿业有限公司嵩县金矿矿产资源开采与生态修复方案
评论
0/150
提交评论