版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在菱形中,,点、分别为、上的动点,,点从点向点运动的过程中,的长度()A.逐渐增加 B.逐渐减小C.保持不变且与的长度相等 D.保持不变且与的长度相等2、(4分)已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.73、(4分)如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣104、(4分)下面的字母,一定不是轴对称图形的是().A. B. C. D.5、(4分)如图,在正方形中,点为上一点,与交于点,若,则A.60° B.65° C.70° D.75°6、(4分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°7、(4分)如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm8、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16 B.19 C.22 D.25二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.10、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.11、(4分)已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.12、(4分)如图,点A,B分别是反比例函数y=-1x与y=kx的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k13、(4分)▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.15、(8分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;(1)求证:△ABE≌△CDF;(2)判断四边形ENFM的形状,并说明理由.16、(8分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.(1)求点的坐标;(2)若点是轴上的一动点,连接、,当的值最小时,求出的坐标及的最小值;(3)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.17、(10分)解方程:x2-4x=1.18、(10分)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线表示日销量(件)与销售时间(天)之间的函数关系.(1)直接写出与之间的函数解析式,并写出的取值范围.(2)若该节能产品的日销售利润为(元),求与之间的函数解析式.日销售利润不超过1950元的共有多少天?(3)若,求第几天的日销售利润最大,最大的日销售利润是多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x=__________时,分式无意义.20、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.21、(4分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.22、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为_____(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.23、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:(1);(2).25、(10分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有名学生?其中穿175型校服的学生有人.(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角度数为;(4)该班学生所穿校服型号的众数是,中位数是.26、(12分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________m,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】【分析】如图,连接BD,由菱形的性质以及∠A=60°,可得△BCD是等边三角形,从而可得BD=BC,再通过证明△BCF≌BDE,从而可得CF=DE,继而可得到AE+CF=AB,由此即可作出判断.【详解】如图,连接BD,∵四边形ABCD是菱形,∠A=60°,∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,∴∠4=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,∴∠1=∠3,在△BCF和△BDE中,,∴△BCF≌BDE,∴CF=DE,∵AE+DE=AB,∴AE+CF=AB,故选D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,熟练掌握相关的定理与性质是解题的关键.2、B【解析】试题分析:根据二次根式的运算法则进行运算即可.试题解析:.故应选B考点:1.二次根式的混合运算;2.求代数式的值.3、D【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,轴,,,而,,,.故选D.本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.4、D【解析】
根据轴对称图形的概念求解.【详解】A、是轴对称图形,故此选项错误;
B、是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项正确.
故选:D.考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、C【解析】
先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.6、D【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7、C【解析】
根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,
∴∠B=90°-60°=30°,
∵DE⊥AB,
∴BD=2DE=2×3=6cm,
∵AD平分∠BAC,∠C=90°,DE⊥B,
∴CD=DE=3cm,
∴BC=BD+CD=6+3=9cm.
故选:C.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.8、C【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【详解】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选:C.本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.【详解】解:直线向右平移个单位后的解析式为,令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),所以直线与坐标轴所围成的三角形面积是.故答案为:.本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.10、1【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.【详解】解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.11、【解析】
当点P与B重合时,推出△AQK为等腰直角三角形,得出QK的长度,当点M′与D重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q的运动路径为QK+KQ′,从而得出结果.【详解】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=MN=CD=3,BN=MN=3,∴此时PB=3-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K,此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即3-3,∴△AQK为等腰直角三角形,∴QK=AQ=3-3,当点M′与D重合时,P′B=BC-P′C=10-3=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-(3-3)=10-3,Q′M′=BP′=BC-P′C=BC-PN=10-3,∴△KQ′M′为等腰直角三角形,∴KQ′=Q′M′=(10-3)=,当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,∴QK+KQ′=(3-3)+()=7,故答案为7.本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.12、1.【解析】
设A(m,-1m),则B(﹣mk,-1m),设AB交y轴于M,利用平行线的性质,得到AM【详解】解:设A(m,-1m),则B(﹣mk,-1m),设AB交∵EM∥BC,∴AM:MB=AE:EC=1:1,∴﹣m:(﹣mk)=1:1,∴k=1,故答案为1.本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.13、(3,1).【解析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)14.【解析】试题分析:(1)先证明四边形CODE是平行四边形,再利用菱形的性质得到直角,证明四边形CODE是矩形.(2)由勾股定理可知OD长,OC是AC一半,所以可知矩形的周长.试题解析:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴□CODE是矩形;(2)在菱形ABCD中,OC=AC=×6=3,CD=AB=5,在Rt△COD中,OD=,∴四边形CODE的周长即矩形CODE的周长为:2(OD+OC)=2×(4+3)=14.15、(1)见解析;(2)四边形ENFM是矩形.见解析.【解析】
(1)根据SAS即可证明;(2)只要证明三个角是直角即可解决问题;【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD∴∠ABD=∠CDB,又∵BE=DF,∴△ABE≌△CDF(SAS).(2)由(1)得,∴∠AEB=∠CFD,∴∠AED=∠CFB,∴AE∥CF又∵EN⊥CF,∠AEN=∠ENF=90°,又∵FM⊥AE,∠FME=90°,∴四边形ENFM是矩形.本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、(1);(2)最小值,M;(3)、、、【解析】
(1)过点作轴于点,证得,然后由相似三角形的性质求得,从而求得GB,HG的长度,使问题得解;(2)作点关于轴的对称点,连接交轴于点,此时的值最小即的长度,根据勾股定理求长度,然后利用待定系数法求直线的函数解析式,从而求与y轴交点坐标,使问题得解;(3)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.【详解】解:(1)如图,过点作轴于点.因为轴∴HG∥OA∴,又∵是线段上靠近点的三等分点∴,∵,,∴,∴∴(2)如图,作点关于轴的对称点,连接交轴于点.则为,此时∴的最小值为;设直线:,把,B(3,0)代入得:,解得:∴直线为当时,∴为(3)如图,当OT=OS时,α=75°-30°=45°;
如图,当OT=TS时,α=90°;
如图,当OT=OS时,α=90°+60°-15°=135°;如图,当ST=OS时,α=180°;综上所述,α的值为45°,90°,135°,180°.本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.17、x1=2+,x2=2-【解析】试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.试题解析:x2-4x=1x2-4x+4=1+4(x-2)2=5x-2=即:x1=2+,x2=2-考点:解一元二次方程配方法.18、(1);(2),18;(3)第5日的销售利润最大,最大销售利润为1650元.【解析】
(1)根据题意和函数图象中的数据,可利用待定系数法求得y与x的函数关系式,并写出x的取值范围;(2)根据题意和(1)中的函数关系式可以写出w与x的函数关系式,求得日销售利润不超过1950元的天数;(3)根据题意和(2)中的关系式分别求出当时和当时的最大利润,问题得解.【详解】(1)当1≤x≤10时,设y与x的函数关系式为y=kx+b,则,解得:,即当1≤x≤10时,y与x的函数关系式为y=−30x+480,当10<x≤30时,设y与x的函数关系式为y=mx+n,则,解得:即当10<x≤30时,y与x的函数关系式为y=21x−30,综上可得,;(2)由题意可得:令,解得.令,解得.∴(天).答:日销售利润不超过1950元的共有18天.(3)①当时,,∴当时,.②当时,,∴当时,.综上所述:当时,.即第5日的销售利润最大,最大销售利润为1650元.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据分式无意义的条件:分母等于0,进行计算即可.【详解】∵分式无意义,∴,∴.故答案为:1.本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.20、504m2【解析】
由OA=2n知OA=+1=1009,据此得出AA=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA=2n,∵2018÷4=504…2,∴OA=+1=1009,∴AA=1009-1=1008,则△OAA的面积是×1×1008=504m2此题考查规律型:数字变换,解题关键在于找到规律21、﹣1.【解析】
先根据方程有两个实数根,确定△≥0,可得k≤,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.【详解】∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,9﹣11k+4k1﹣4k1﹣4≥0,k≤,∵x1•x1=k1+1>0,∴x1、x1,同号,分两种情况:①当x1、x1同为正数时,x1+x1=7,即1k﹣3=7,k=5,∵k≤,∴k=5不符合题意,舍去,②当x1、x1同为负数时,x1+x1=﹣7,即1k﹣3=﹣7,k=﹣1,故答案为:﹣1.本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤.22、90.【解析】
(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可.【详解】(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90°(Ⅱ)构造正方形BCDE,∠AEC即为所求;故答案为90本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题23、1【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),
∴点P到原点的距离==1.故答案为:1此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.二、解答题(本大题共3个小题,共30分)24、(1);(2)或.【解析】
(1)用求根根式法求解即可;(2)先移项,然后用因式分解法求解即可.【详解】解:(1)∵、、,∴,则;(2)∵,∴,则,∴或,解得:或.本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.25、(1)50;10;(2)补图见解析;(3)14.4°;(4)众数是165和1;中位数是1.【解析】
(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 批注式阅读在初中语文小说教学中的运用研究
- 《城市管理学》万字笔记
- 2024年国家缆索式起重机司机操作证理论考试题库(含答案)
- 2025届人教版高考生物一轮复习:降低化学反应活化能的酶
- 数据价值评估方法研究
- Python程序设计实践-教学日历
- 湖南省联考联合体2023-2024学年高一年级下册期末考试历史试题(解析版)
- 强化税收工作中的法治观念
- 轴用唇形密封圈
- 专项24-垂径定理-十大题型
- GB/T 16830-2008商品条码储运包装商品编码与条码表示
- GB 5226.1-2008机械电气安全机械电气设备第1部分:通用技术条件
- 双代号网络计划图习题
- 钣金冲压件质量要求
- 背景调查管理规定(9篇)
- 高效管理沟通新课件
- 2022年中国铁路武汉局集团有限公司校园招聘笔试试题及答案解析
- 《最优化方法》教学大纲
- 第15课《诫子书》课件(共29张PPT) 部编版语文七年级上册
- 大型设备说明-涂胶显影机第1台
- 六年级上册美术课件 8《参观券的设计》 人美版
评论
0/150
提交评论