2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省武汉市四校联考数学八年级第一学期期末质量跟踪监视模拟试题踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A.5 B.7 C.5或7 D.62.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个 B.4个 C.5个 D.无数个4.已知,,则的值为()A.11 B.18 C.38 D.125.如图,已知四边形ABCD,连接AC,若AB∥CD,则①∠BAD+∠D=180°,②∠BAC=∠DCA,③∠BAD+∠B=180°,④∠DAC=∠BCA,其中正确的有()A.①②③④ B.①② C.②③ D.①④6.直线与直线的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列长度的三条线段,能组成三角形的是()A.3、1、4 B.3、5、9 C.5、6、7 D.3、6、108.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,29.用不等式表示如图的解集,其中正确的是()A. B.x≥2 C. D.x≤210.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17 B.7 C.14 D.1311.计算的结果是()A. B.x C.3 D.012.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________cm.(π取3)14.在平面直角坐标系中,若点到原点的距离是,则的值是________.15.如图,在中,已知于点,,,则的度数为______.16.在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________.17.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.18.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题(共78分)19.(8分)我们在学习了完全平方公式后,对于一些特殊数量关系的式子应该学会变形.如m2+2mn+2n2﹣6n+9=0;→m2+2mn+n2+n2﹣6n+9=0;→(m+n)2+(n﹣3)2=0,就会很容易得到m、n.已知:a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.20.(8分)如图,在平面直角坐标系中,点的坐标为(-3,1).(1)请在图中作出与关于轴对称的;(2)写出点,,的坐标;(3)求出的面积.21.(8分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.22.(10分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.23.(10分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(10分)如图在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.25.(12分)现要在△ABC的边AC上确定一点D,使得点D到AB,BC的距离相等.(1)如图,请你按照要求,在图上确定出点D的位置(尺规作图,不写作法,保留作图痕迹);(2)若AB=4,BC=6,△ABC的面积为12,求点D到AB的距离.26.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(1)求所捂部分化简后的结果:(2)原代数式的值能等于-1吗?为什么?

参考答案一、选择题(每题4分,共48分)1、B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为1.故选B.【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.2、D【解析】由点A中,,可得A点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3、C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.4、B【分析】根据同底数幂乘法的逆运算法则,幂的乘方逆运算法则计算即可.【详解】,故选:B.【点睛】本题考查了同底数幂的乘法逆运算法则,幂的乘方逆运算法则,熟记幂的运算法则是解题的关键.5、B【分析】利用平行线的性质依次分析即可得出结果.【详解】解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补),∠BAC=∠DCA(两直线平行,内错角相等),故①、②正确;只有当AD∥BC时,根据两直线平行,同旁内角互补,得出∠BAD+∠B=180°,根据两直线平行,内错角相等,得出∠DAC=∠BCA,故③、④错误,故选:B.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本性质,属于中考常考题型.6、C【分析】判断出直线可能经过的象限,即可求得它们的交点不可能在的象限.【详解】解:因为y=−x+4的图象经过一、二、四象限,所以直线y=x+m与y=−x+4的交点不可能在第三象限,故选:C.【点睛】本题考查一次函数的图象和系数的关系,根据一次函数的系数k,b与0的大小关系判断出直线经过的象限即可得到交点不在的象限.7、C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;

B、3+5=8<9,不能组成三角形;

C、5+6=11>7,能够组成三角形;

D、3+6=9<10,不能组成三角形.

故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.8、D【分析】根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+()2=22,D能构成直角三角形;故选D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.9、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D.10、D【分析】利用勾股定理求出斜边即可.【详解】由勾股定理可得:斜边=,故选:D.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.11、C【解析】原式===3.故选C.点睛:掌握同分母分式的计算法则.12、B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则,将绳子对折再量长木,长木还剩余1尺,则,∴,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(每题4分,共24分)13、15cm.【解析】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.解:如图所示,圆柱展开图为长方形,

则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,

蚂蚁经过的最短距离为连接A,B的线段长,

由勾股定理得AB===15cm.

故蚂蚁经过的最短距离为15cm.(π取3)“点睛”解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.14、3或-3【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值.【详解】解:∵点到原点的距离是,∴,解得:x=3或-3,故答案为:3或-3.【点睛】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.15、【分析】根据线段垂直平分线的性质可得AB=AC,根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵AD⊥BC于点D,BD=DC,

∴AB=AC,

∴∠CAD=∠BAD=20°,

∵AD⊥BC,

∴∠ADC=90°,

∴∠C=70°,

故答案为:70°.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌等腰三角形的性质是解题的关键.16、140°.【解析】∠C的外角=∠A+∠B=60°+80°=140°.故答案为140°.17、如果两个角相等,那么这两个角是对顶角.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,

∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.

故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查了命题的条件和结论的叙述以及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.18、240°【解析】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.三、解答题(共78分)19、5≤c<1.【分析】根据a2+b2=10a+8b﹣41,可以求得a、b的值,由a,b,c为正整数且是△ABC的三边长,c是△ABC的最长边,可以求得c的值,本题得以解决.【详解】解:∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,∴a﹣5=0,b﹣4=0,.解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<1.【点睛】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.20、(1)答案见解析;(2),,;(3)9.5【分析】(1)依据轴对称的性质,即可得到的三个顶点,进而得出.(2)根据图像直接找出坐标即可.(3)依据割补法即可得到△ABC的面积.【详解】(1)如图所示:(2)点的坐标为,点的坐标为,点的坐标为.(3)△ABC的面积【点睛】本题考查作图-轴对称变换,解题关键是根据题意作出.21、(1)详见解析;(2)AB+AC=2AE,理由详见解析.【分析】(1)根据相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【详解】证明:(1)∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵在Rt△BDE与Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD平分∠BAC;(2)AB+AC=2AE.理由:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.22、(1)A(﹣4,0),B(0,3);(2)P(4,);(3)满足条件的点Q(12,12)或(,4).【分析】令x=0,y=0即可求出A,B坐标.因为点C是点A关于y轴对称的点,求得C坐标,因为CD⊥x轴,所以求得D坐标,由折叠知,AC'=AC,所以C'D=AD﹣AC',设PC=a,在Rt△DC'P中通过勾股定理求得a值,即可求得P点坐标.在S△CPQ=2S△DPQ情况下分类讨论P点坐标即可求解.【详解】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).【点睛】本题主要考查了一元一次方程,二元一次方程,对称,折叠的综合应用,灵活运用是关键.23、(1)该旅行社今年的有45人前来观看赛事;(2)故人均交通费最多为100元.【分析】(1)设该旅行社去年有x人前来观看赛事,根据“人数比去年增加了,总费用增加了3900元,人均费用反而下降了20元”列方程,求解即可;(2)设今年该旅行社本次费用中,人均交通费为x元,根据“其它费用不低于交通费的2倍”,列不等式求解即可.【详解】(1)设该旅行社去年有人前来观看赛事,根据题意,得:解得:.经检验:是原方程的解.所以,原方程的解为,故:.答:该旅行社今年的有45人前来观看赛事;(2)设今年该旅行社本次费用中,人均交通费为元,由题意得:解得:.故人均交通费最多为100元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.找准相等关系或不等关系是解答本题的关键.24、(1)6;(2)120°(3)1.【分析】(1)根据垂直平分线的性质可得BM=AM,CN=AN,再根据三角形的周长即可求出BC;(2)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN;(3)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.【详解】解:(1)∵AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,∴BM=AM,CN=AN∵△AMN的周长为6,∴AM+AN+MN=6∴BC=BM+MN+CN=AM+MN+AN=6;(2)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论