版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省连云港市灌南县八年级数学第一学期期末达标测试试题试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.将下列多项式分解因式,结果中不含因式的是A. B.C. D.2.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+23.解分式方程时,去分母后变形为A. B.C. D.4.用三角尺可按下面方法画角平分线:在已知的的两边上,分别截取,再分别过点、作、的垂线,交点为,画射线,则平分.这样画图的主要依据是()A. B. C. D.5.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.6.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,为线段的中点,,、、、到点的距离分别是、、、,下列四点中能与、构成直角三角形的顶点是()A. B. C. D.8.如图,已知,则一定是的()A.角平分线 B.高线 C.中线 D.无法确定9.等式成立的x的取值范围在数轴上可表示为(
)A. B. C. D.10.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°11.当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A.y=kx﹣2(k≠0) B.y=kx+k+2(k≠0)C.y=kx﹣k+2(k≠0) D.y=kx+k﹣2(k≠0)12.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.-2a+b B.2a-b C.-b D.b二、填空题(每题4分,共24分)13.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.14.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.15.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是__cm.16.有两个正方形,现将放在的内部得图甲,将并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形的边长之和为________.17.已知,,,…,若(,均为实数),则根据以上规律的值为__________.18.等腰三角形的一个角是50°,则它的顶角等于°.三、解答题(共78分)19.(8分)已知函数y=(m+1)x2-|m|+n+1.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?20.(8分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.21.(8分)如图是某台阶的一部分,并且每级台阶的宽等于高.请你在图中建立适当的坐标系,使点的坐标为,点的坐标为.(1)直接写出点,,的坐标;(2)如果台阶有级(第个点用表示),请你求出该台阶的高度和线段的长度.22.(10分)在平面直角坐标系中,直线AB分别交x轴、y轴于点A(–a,0)、点B(0,b),且a、b满足a2+b2–4a–8b+20=0,点P在直线AB的右侧,且∠APB=45°.(1)a=;b=.(2)若点P在x轴上,请在图中画出图形(BP为虚线),并写出点P的坐标;(3)若点P不在x轴上,是否存在点P,使△ABP为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由.23.(10分)解分式方程:(1)(2)24.(10分)两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?25.(12分)如图,在△ABC中,BA=BC,CD和BE是△ABC的两条高,∠BCD=45°,BE与CD交于点H.(1)求证:△BDH≌△CDA;(2)求证:BH=2AE.26.如图,在中,是边上的高,,分别是和的角平分线,它们相交于点,.求的度数.
参考答案一、选择题(每题4分,共48分)1、D【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【详解】A、x2-1=(x+1)(x-1),故A选项不合题意;
B、=(x-1)x,故B选项不合题意;
C、x2-2x+1=(x-1)2,故C选项不合题意;
D、x2+2x+1=(x+1)2,故D选项符合题意.
故选:D.【点睛】此题考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.2、D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.3、D【解析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、D【分析】直接利用直角三角形全等的判定HL定理,可证Rt△OMP≌Rt△ONP.【详解】由题意得,OM=ON,∠OMP=∠ONP=90°,OP=OP在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠AOP=∠BOP故选:D【点睛】本题主要考查全等三角形的判定方法和全等三角形的性质,掌握全等三角形的判定方法之一:斜边及一条直角边对应相等的两个直角三角形全等.5、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.6、B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.
故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、B【分析】根据O为线段AB的中点,AB=4cm,得到AO=BO=2cm,由P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,得到OP2=2cm,推出OP2=AB,根据直角三角形的判定即可得到结论.【详解】∵O为线段AB的中点,AB=4cm,∴AO=BO=2cm,∵P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,∴OP2=2cm,∴OP2=AB,∴P1、P2、P3、P4四点中能与A、B构成直角三角形的顶点是P2,故选:B.【点睛】本题考查了直角三角形的判定定理,熟记直角三角形的判定是解题的关键.8、C【分析】根据三角形中线的定义可知.【详解】因为,所以一定是的中线.【点睛】本题考查三角形的中线,掌握三角形中线的定义是解题的关键.9、B【分析】根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.10、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,
∵∠ACB=90°,AC=CD,
∴∠DAC=∠ADC=45°,
∵∠ACB=90°,DE⊥AB,
∴∠DEB=90°=∠ACB=∠DCM,
∵∠ABC=∠DBE,
∴∠CAB=∠CDM,
在△ACB和△DCM中∴△ACB≌△DCM(ASA),
∴AB=DM,
∵AB=2DE,
∴DM=2DE,
∴DE=EM,
∵DE⊥AB,
∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.11、B【解析】把已知点(﹣1,2)代入选项所给解析式进行判断即可.【详解】在y=kx﹣2中,当x=﹣1时,y=﹣k﹣2≠2,故A选项不合题意,在y=kx+k+2中,当x=﹣1时,y=﹣k+k+2=2,故B选项符合题意,在y=kx﹣k+2中,当x=﹣1时,y=﹣k﹣k﹣2=﹣2k﹣2≠2,故C选项不合题意,在y=kx+k﹣2中,当x=﹣1时,y=﹣k+k﹣2=﹣2≠2,故D选项不合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.12、A【分析】直接利用数轴得出a<0,a−b<0,进而化简得出答案.【详解】由数轴可得:a<0,a−b<0,则原式=−a−(a−b)=b−2a.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.二、填空题(每题4分,共24分)13、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.14、25°【解析】试题分析:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°.∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°.∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.15、1【解析】根据题意,过A点和B点的平面展开图分三种情况,再根据两点之间线段最短和勾股定理可以分别求得三种情况下的最短路线,然后比较大小,即可得到A点到B点的最短路线,本题得以解决.【详解】解:由题意可得,
当展开前面和右面时,最短路线长是:当展开前面和上面时,最短路线长是:当展开左面和上面时,最短路线长是:∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是1cm,
故答案为:1.【点睛】本题主要考查的就是长方体的展开图和勾股定理的实际应用问题.解决这个问题的关键就是如何将长方体进行展开.在解答这种问题的时候我们需要根据不同的方式来对长方体进行展开,然后根据两点之间线段最短的性质通过勾股定理来求出距离.有的题目是在圆锥中求最短距离,我们也需要将圆锥进行展开得出扇形,然后根据三角形的性质进行求值.16、1【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b=1,故答案为:1.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.17、【分析】观察所给的等式,等号右边是,,,…,,据此规律可求得的值,从而求得结论.【详解】观察下列等式,,,…,∴,∵,∴,,∴.故答案为:.【点睛】本题主要考查的是二次根式的混合运算以及归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.18、50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【详解】(1)当50°为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=.故答案为:50°或.考点:等腰三角形的性质.三、解答题(共78分)19、(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−1时,这个函数是正比例函数.【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+1=0,解得:m=±1,n=−1,又∵m+1≠0即m≠−1,∴当m=1,n=−1时,这个函数是正比例函数.【点睛】此题考查一次函数的定义,正比例函数的定义,解题关键在于利用其各定义进行解答.20、(1)6;(2)1【解析】(1)根据垂直平分线的性质,可得与的关系,再根据三角形的周长,可得答案;(2)根据两点之间线段最短,可得点与点的关系,可得与的关系.【详解】解:(1)∵MN是AB的垂直平分线∴MA=MB∵=即∴;(2)当点与点重合时,PB+CP的值最小,PB+CP能取到的最小值=1.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.21、(1),,;(2)该台阶的高度是,的长度是【分析】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【详解】解:以点为坐标原点,水平方向为轴,建立平面直角坐标系,如图所示.(1),,;(2)点的坐标是,点的坐标是,每阶台阶的高为,宽也为.阶台阶的高为..所以,该台阶的高度是,的长度是.【点睛】本题考查了坐标与图形的性质确,主要利用了平面直角坐标系,从平移的角度考虑求解是解题的关键.22、(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2).【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点B的坐标;(3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.【详解】解:(1)∵a2+b2–4a–8b+20=0,∴(a2–4a+4)+(b2–8b+16)=0,∴(a–2)2+(b–4)2=0∴a=2,b=4,故答案为:2,4;(2)如图1,由(1)知,b=4,∴B(0,4),∴OB=4,点P在直线AB的右侧,且在x轴上,∵∠APB=45°,∴OP=OB=4,∴P(4,0),故答案为:(4,0);(3)存在.理由如下:由(1)知a=﹣2,b=4,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,Ⅰ、如图2,当∠ABP=90°时,∵∠APB=∠BAP=45°,∴AB=PB,过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC,在△AOB和△BCP中,,∴△AOB≌△BCP(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=2,∴P(4,2),Ⅱ、如图3,当∠BAP=90°时,过点P'作P'D⊥OA于D,同Ⅰ的方法得,△ADP'≌△BOA,∴DP'=OA=2,AD=OB=4,∴OD=AD﹣OA=2,∴P'(2,﹣2);即:满足条件的点P(4,2)或(2,﹣2);【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.23、(1);(2)【分析】(1)方程左右两边同时乘以,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可;(2)方程左右两边同时乘以,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可.【详解】(1)左右两边同乘,得,解整式方程得,,经检验,是原分式方程的解;(2)左右两边同乘,得,解整式方程得,,经检验,是原分式方程的解.【点睛】本题主要考查解分式方程,掌握解分式方程的步骤是解题的关键.24、(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天【分析】(1)乙队单独完成这项工程需x天,设根据“先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成”列出方程,解之即可;(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;(3)求出甲队单独施工需要的天数,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青鸟读后感集合15篇
- 私立医院护士聘用合同(33篇)
- 租赁房屋商用合同书(3篇)
- 工程建设项目实施方案(3篇)
- 小餐桌食品安全承诺书(33篇)
- 广东省惠州市2024−2025学年高三第二次调研考试(期中) 数学试题含答案
- 最佳路径教案5篇
- 山西省晋中市(2024年-2025年小学五年级语文)统编版小升初真题((上下)学期)试卷及答案
- 2024年防粘剂项目资金筹措计划书
- 2023年皮革色浆资金筹措计划书
- 2023-2024学年译林版八年级上学期英语12月月考模拟试卷(含答案解析)
- 【川教版】《生命 生态 安全》五上第8课《防患于未“燃”》课件
- 永久避难硐室避险安全知识课件
- 大学生心理健康教育课件-了解原生家庭
- 低空经济产业园商业计划书
- 女性的情绪及压力管理
- 腰椎骨折查房护理课件
- 养生祛病一碗汤
- 中国手机租赁行业市场发展前景研究报告-智研咨询发布
- 预防接种工作规范(2023年版)解读课件
- 老年慢性支气管炎的健康宣教
评论
0/150
提交评论