版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省温州实验中学数学八年级第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点P(﹣1,2)关于x轴对称点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)2.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A. B.C. D.3.下列命题是假命题的是()A.所有的实数都可用数轴上的点表示B.三角形的一个外角等于它的两个内角的和C.方差能反映一组数据的波动大小D.等角的补角相等4.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,115.下列运算错误的是()A. B. C. D.6.已知点P−1−2a,5关于x轴的对称点和点Q3,b关于y轴的对称点相同,则点Aa,bA.1,−5 B.1,5 C.−1,5 D.−1,−57.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣38.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. B.C.m D.9.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=().A.60° B.80° C.70° D.50°10.下列“表情图”中,属于轴对称图形的是A. B. C. D.11.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.12.9的平方根是()A.±3 B.3 C.±81 D.±3二、填空题(每题4分,共24分)13.(x2y﹣xy2)÷xy=_____.14.使有意义的x的取值范围为______.15.如图,在平面直角坐标系中,点的坐标为,点为轴上一动点,以为边在的右侧作等腰,,连接,则的最小值是__________.16.如果分式有意义,那么x的取值范围是____________.17.如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.18.如图,中,是的中点,则________________度.三、解答题(共78分)19.(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?20.(8分)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?21.(8分)以水润城,打造四河一库生态水系工程,是巩义坚持不懈推进文明创建与百城提质深度融合的缩影,伊洛河畔正是此项目中的一段.如今,伊洛河畔需要铺设一条长为米的管道,决定由甲、乙两个工程队来完成.已知甲工程队比乙工程队每天能多铺设米,且甲工程队铺设米所用的天数与乙工程队铺设米所用的天数相同.(完成任务的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项管道铺设任务的工期不超过天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为整百数)22.(10分)先化简,再求值:,其中a=.23.(10分)(1)如图1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分线交于点O,则∠O=°,(2)如图2,若∠B=α,其他条件与(1)相同,请用含α的代数式表示∠O的大小;(3)如图3,若∠B=α,,则∠P=(用含α的代数式表示).24.(10分)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?25.(12分)生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定,如图,AB为一长度为6(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?(2)如图2,若梯子底端向左滑动(32﹣2)米,那么梯子顶端将下滑多少米?26.如图所示,若MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【详解】点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选D.【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.2、C【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系.3、B【解析】根据实数和数轴的一一对应关系,可知所有的实数都可用数轴上的点表示,故是真命题;根据三角形的外角的性质,可知三角形的一个外角等于它的不相邻两内角的和,故是假命题;根据方差的意义,可知方差越大,波动越大,方差越小,波动越小,故是真命题;根据互为补角的两角的性质,可知等角的补角相等,故是真命题.故选B.4、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、32+42≠62,不能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项正确;D、62+72≠112,不能构成直角三角形,故选项错误.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.5、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.6、B【解析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y)∴P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b),因而就得到关于a,b的方程,从而得到a,b的值.则A(a,b)关于x轴对称的点的坐标就可以得到.【详解】∵P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b);∴-1-2a=-3,b=-5;∴a=1,∴点A的坐标是(1,-5);∴A关于x轴对称的点的坐标为(1,5).故选B.【点睛】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7、D【解析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,∴方程ax+b=0的解是x=-3.故选D.8、C【分析】根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.【详解】根据题意,得:(2m+3)2-(m+3)2=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m.故选C.【点睛】本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.9、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP=20°,∠ACP=50°,
∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,
∴∠A=∠ACM-∠ABC=60°故选A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角,难度适中.10、D【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,A、B,C不是轴对称图形;D是轴对称图形.故选D.11、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.12、D【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±3)2=9,∴9的平方根是±3,故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题(每题4分,共24分)13、9x﹣4y+1【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式==9x﹣4y+1.故答案为:9x﹣4y+1.【点睛】本题考查了整式的除法运算,解题关键是正确掌握相关运算法则.14、x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.15、3.【分析】如图,作DH⊥x于H,利用全等三角形的判定与性质证明点D在直线y=x-3上运动,O关于直线y=x-3的对称点E′,连接AE′,求出AE′的长即可解决问题.【详解】如图,作DH⊥x轴于H.∵∠AOB=∠ABD=∠BHD=90°,∴∠ABO+∠BAO=90°,∠ABO+∠DBH=90°,∴∠BAO=∠DBH,∵AB=DB,∴△ABO≌△BDH(AAS),∴OA=BH=3,OB=DH,∴HD=OH-3,∴点D在直线y=x-3上运动,作O关于直线y=x-3的对称点E′,连接AE′交直线y=x-3于D′,连接OD′,则OD′=D′E′根据“两点之间,线段最短”可知此时OD+AD最小,最小值为AE′,∵O(0,0),O关于直线y=x-3的对称点为E′,∴E′(3,-3),∵A(0,3),∴AE′=3,∴OD+AD的最小值是3,故答案为:3.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的判性质,利用轴对称解决最短路径问题,一次函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.16、x≠1【解析】∵分式有意义,∴,即.故答案为.17、36【分析】根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【详解】解:据E、F是CA、CB的中点,即EF是△CAB的中位线,∴EF=AB,∴AB=2EF=2×18=36.故答案为36.【点睛】本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.18、62【分析】根据直角三角形斜边上的中线等于斜边的一半可知,根据等腰三角形的性质可知,进而即可得解.【详解】∵在中,D是的中点∴∴是等腰三角形∴∵∴∵∴故答案为:62.【点睛】本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.三、解答题(共78分)19、(1)80人;(2)11.5元;(3)10元.【解析】试题分析:(1)参加这次夏令营活动的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出平均数.(3)因为初中生最多,所以众数为初中生捐款数.试题解析:解:(1)参加这次夏令营活动的初中生共有200×(1-10%-20%-30%)=80人;
(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,
所以平均每人捐款==11.5(元);
(3)因为初中生最多,所以众数为10(元).20、(1)乙;1米/分钟;(2)12分钟时相遇;(3)2分钟时【分析】(1)依据函数图象可得到两人跑完全程所用的时间,从而可知道谁先到达终点,依据速度=路程÷时间可求得甲的速度;(2)先求得甲的路程与时间的函数关系式,然后求得10<x<16时,乙的路程与时间的函数关系式,最后,再求得两个函数图象交点坐标即可;(3)根据题意列方程解答即可.【详解】解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==1米/分钟.故答案为:乙;1.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=1x,设10分钟后(即10<x<16),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,所以10分钟后乙跑的路程y(米)与时间x(分钟)之间的函数关系式,联立甲乙两人的函数关系式解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得,解得x=2.答:在甲、乙相遇之前,2分钟时甲与乙相距1米.【点睛】本题考查的是一次函数的实际应用中的行程问题,解决此类问题,需要结合解析式、图象与问题描述的实际情况,充分理解题意,熟练进行运算才比较简便.21、(1)甲、乙工程队每天分别能铺设米和米;(2)分配方案有种:方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.【分析】(1)设甲工程队每天能铺设x米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解;(2)设分配给甲工程队y米,则分配给乙工程队(1000−y)米.根据完成该项工程的工期不超过10天,列不等式组进行分析.【详解】(1)设甲工程队每天能铺设米,则乙工程队每天能铺设米,根据题意得:,即,∴,解得:,经检验,是所列分式方程的解,且与题意相符,∴(米),答:甲、乙工程队每天分别能铺设米和米;(2)设分配给甲工程队米,则分配给乙工程队米.由题意,得解得:.∵分配的工程量为整百数,∴y只能取或或,所以分配方案有种:方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式组的应用,在工程问题中,工作量=工作效率×工作时间.在列分式方程解应用题的时候,也要注意进行检验.22、2a+6,1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入即可解答本题.【详解】解:原式===2a+6当a==1+4=5时,原式=2×5+6=1.【点睛】本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.23、(1)∠O=60°;(2)90°-;(3)【分析】(1)由题意利用角平分线的性质和三角形内角和为180°进行分析求解;(2)根据题意设∠BAC=β,∠ACB=γ,则α+β+γ=180°,利用角平分线性质和外角定义找等量关系,用含α的代数式表示∠O的大小;(3)利用(2)的条件可知n=2时,∠P=,再将2替换成n即可分析求解.【详解】解:(1)因为∠DAC和∠ACE的角平分线交于点O,且∠B=60°,所以,有∠O=60°.(2)设∠BAC=β,∠ACB=γ,则α+β+γ=180°∵∠ACE是△ABC的外角,∴∠ACE=∠B+∠BAC=α+β∵CO平分∠ACE同理可得:∵∠O+∠ACO+∠CAO=180°,∴;(3)∵∠B=α,,由(2)可知n=2时,有∠P==,将2替换成n即可,∴.【点睛】本题考查用代数式表示角,熟练掌握并综合利用角平分线定义和三角形内角和为180°以及等量替换技巧与数形结合思维分析是解题的关键.24、75.【解析】试题分析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青鸟读后感集合15篇
- 私立医院护士聘用合同(33篇)
- 租赁房屋商用合同书(3篇)
- 工程建设项目实施方案(3篇)
- 小餐桌食品安全承诺书(33篇)
- 广东省惠州市2024−2025学年高三第二次调研考试(期中) 数学试题含答案
- 最佳路径教案5篇
- 山西省晋中市(2024年-2025年小学五年级语文)统编版小升初真题((上下)学期)试卷及答案
- 2024年防粘剂项目资金筹措计划书
- 2023年皮革色浆资金筹措计划书
- 初中语文文言文划分朗读节奏课件
- 10KV供配电工程施工组织设计方案
- 应届生学历学位证明模板
- 【学员】线上视频课堂观察记录表单
- 中职电工电子基础6-欧姆定律电子课件
- 迈尔尼《战争》阅读练习及答案
- 脚手架安全专项检查表格
- 安全生产监督体系完整
- 等腰三角形(复习教案)
- 输电线路工程基础施工方案
- 中班语言《黑蚂蚁和红蚂蚁》-廖小华老师
评论
0/150
提交评论