2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题含解析_第1页
2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题含解析_第2页
2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题含解析_第3页
2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题含解析_第4页
2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆乌鲁木齐市沙依巴克区八年级数学第一学期期末经典试题典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在长方形中,厘米,厘米,点在线段上以4厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为()厘米/秒时,能够在某一时刻使与全等.A.4 B.6 C.4或 D.4或62.(2016河南2题)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A. B. C. D.3.的平方根是()A.2 B.-2 C.4 D.24.如图,在等腰三角形中,,的垂直平分线交于点,连接,,则的度数为()A. B. C. D.5.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π6.下列各数:3.141,−227,8,π,4.21·7A.1个 B.2 C.3个 D.4个7.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上8.下列图形中,对称轴条数最多的图形是()A. B. C. D.9.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.910.若等腰三角形的周长为17cm,其中一边长为7cm,则该等腰三角形的底边长为()A.3cmB.3cm或5cmC.3cm或7cmD.7cm11.下列运算正确的是()A. B. C. D.12.若点A(n,2)在y轴上,则点B(2n-1,3n+1)位于()A.第四象限. B.第三象限 C.第二象限 D.第一象限二、填空题(每题4分,共24分)13.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.14.如图是由4个相同的小正方形组成的网格图,点A、B、C、D、E都在格点上,则的度数为______.15.计算:=______.16.分解因式:x2y﹣4xy+4y=_____.17.如图,图①是一块边长为1,周长记为的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第块纸板的周长为,则=_____.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_____°.三、解答题(共78分)19.(8分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.20.(8分)某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.(参考值:,,,)21.(8分)如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.22.(10分)解不等式组:23.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.24.(10分)(1)运用乘法公式计算:.(2)解分式方程:.25.(12分)某校为了解学生对“安全常识”的掌握程度,随机抽取部分学生安全知识竞赛的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.图中A表示“不了解”,B表示“了解很少”、C表示“基本了解”,D表示“非常了解”.请根据统计图所提供的信息解答下列问题:(1)被调查的总人数是人,扇形统计图中A部分所对应的扇形圆心角的度数为度;(2)补全条形统计图;(3)若该校共有学生1500人,请根据上述调查结果,估计该校学生中达到“基本了解”和“非常了解”共有人.26.如图,△ABC中,∠A=60°,P为AB上一点,Q为BC延长线上一点,且PA=CQ,过点P作PM⊥AC于点M,过点Q作QN⊥AC交AC的延长线于点N,且PM=QN,连PQ交AC边于D.求证:(1)△ABC为等边三角形;(2)DM=AC.

参考答案一、选择题(每题4分,共48分)1、C【分析】设点Q的速度为xcm/s,分两种情形构建方程即可解决问题.【详解】解:设点的速度为,分两种情形讨论:①当,时,与全等,即,解得:,∴,∴;②当,时,与全等,即,,∴,∴.综上所述,满足条件的点的速度为或.故答案选:C.【点睛】本题考查矩形的性质、全等三角形的性质、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2、A【详解】略3、D【分析】根据算术平方根的定义先求出,然后根据平方根的定义即可得出结论.【详解】解:∵=4∴的平方根是2故选D.【点睛】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根的定义和平方根的定义是解决此题的关键.4、A【分析】根据等腰三角形和线段垂直平分线的性质即可得出答案.【详解】∵AB=AC,∠A=45°∴∠ABC=∠C=67.5°又DM是AB的垂直平分线∴DA=DB∴∠A=∠DBA=45°∠DBC=∠ABC-∠DBA=22.5°故答案选择A.【点睛】本题考查的是等腰三角形和线段垂直平分线的性质,比较简单,需要熟练掌握相关基础知识.5、D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.6、C【解析】无理数就是无限不循环小数,依据定义即可判断.【详解】8=22,根据无理数的定义可知无理数有:8,π,0.1010010001……,故答案为【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.7、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为,所以三边长为,,不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.9、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.10、C【解析】分为两种情况:7cm是等腰三角形的腰或7cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:若7cm为等腰三角形的腰长,则底边长为17-7-7=3(cm),3+7>7,符合三角形的三边关系;

若7cm为等腰三角形的底边,则腰长为(17-7)÷2=5(cm),此时三角形的三边长分别为7cm,5cm,5cm,符合三角形的三边关系;

故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.11、C【分析】分别根据积的乘方运算法则、同底数幂的除法法则和完全平方公式计算各项,进而可得答案.【详解】解:A、,故本选项运算错误,不符合题意;B、,故本选项运算错误,不符合题意;C、,故本选项运算正确,符合题意;D、,故本选项运算错误,不符合题意;故选:C.【点睛】本题考查了幂的运算性质和完全平方公式,属于基础题目,熟练掌握基本知识是解题的关键.12、C【分析】由点在y轴的条件是横坐标为0,得出点A(n,2)的n=0,再代入求出点B的坐标及象限.【详解】∵点A(n,2)在y轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(2n﹣1,3n+1)在第二象限.故选:C.【点睛】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题(每题4分,共24分)13、0.1【分析】利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.14、180°【分析】由图可得,FB=ED,∠F=∠E=90°,FC=EC,利用SAS证明△FBC≌△EDC,根据全等三角形的性质不难求出∠ABC+∠EDC的度数.【详解】解:由图可得:FB=ED,∠F=∠E=90°,FC=EC,∴△FBC≌△EDC(SAS),∴∠EDC=∠FBC,∴∠ABC+∠EDC=∠ABC+∠FBC=180°,故答案为:180°.【点睛】本题考查了全等三角形的判定和性质,准确识别图形,找出证明全等所需的条件是解题关键.15、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.16、y(x-2)2【分析】先提取公因式y,再根据完全平方公式分解即可得.【详解】原式==,故答案为.17、【分析】根据等边三角形的性质(三边相等)求出等边三角形的面积P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.【详解】解:P1=1+1+1=3,P2=1+1+=,P3=1+++×3=,P4=1+++×2+×3=,…∴P3-P2===,P4-P3=,则Pn-Pn-1=,故答案为【点睛】本题考查了等边三角形的性质;通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题是关键.18、35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,求出∠CAB=∠EAD,待入求出即可.

解:∵△ABC≌△ADE,

∴∠CAB=∠EAD,

∵∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,

∴∠BAD=∠EAC,

∴∠BAD=∠EAC=35°.

故答案为:35.三、解答题(共78分)19、证明见解析.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【详解】连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).【点睛】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20、41.08【分析】如图所示,求出DC=2.5,BC=3,由左视图可得AC=1,根据勾股定理求得AB=,由左视图得长方形屋顶长为6.5,根据长方形面积计算公式求得一面屋顶的面积,然后再乘以2即可得解.【详解】如图所示,易知四边形GEDC和BFEG均为矩形,∴BG=EF=0.5,GC=DE=,∴BC=BG+GC=0.5+2.5=3,由左视图可知AC=1,在Rt△ABC中,∴由左视图可知屋顶长为6.5,所以,屋顶顶面的面积为:==41.08.【点睛】此题主要考查了运用勾股定理解决实际问题,同时考查了几何体的三视图.21、详见解析.【解析】根据已知条件利用角与角之间的关系来求得△DEF的各角分别为60度,从而得出其是一个等边三角形.【详解】∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.【点睛】本题考查了等边三角形的性质与判定,直角三角形两锐角互余等,熟练掌握相关的性质与定理是解题的关键.22、【分析】分别把两个不等式解出来,然后找共同部分即是不等式组的解集.【详解】原不等式可化为,即不等式组的解集是【点睛】本题主要考查一元一次不等式组的解法,掌握一元一次不等式的解法是解题的关键.23、(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD∴∠OAE=∠OCF∠OEA=∠OFC∵AE=CF∴△AEO≌△CFO∴OE=OF(2)连接BO∵OE=OFBE=BF∴BO⊥EF且∠EBO=∠FBO∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC∠BEF=∠BAC+∠EOA∴∠BAC=∠EOAAE=OE∵AE=CFOE=OF∴OF=CF又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=10°∠BAC=30°∵tan∠BAC=∴tan30°=即∴AB=1.考点:三角形全等的证明、锐角三角函数的应用.24、(1);(2)无解【分析】(1)先添

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论