版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省兰州外国语学校数学八上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列手机APP图案中,属于轴对称的是()A. B. C. D.2.当一个多边形的边数增加时,它的内角和与外角和的差()A.增大 B.不变 C.减小 D.以上都有可能3.如果,且,那么点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,△ABC中,AB=AC,∠A=36°,DE垂直平分AB交AC于D,交AB于E,下列论述错误的是()A.BD平分∠ABC B.D是AC的中点C.AD=BD=BC D.△BDC的周长等于AB+BC5.如图,在和中,,若添加条件后使得≌,则在下列条件中,不能添加的是().A., B.,C., D.,6.下列代数运算正确的是()A. B. C. D.7.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.98.直线的图象如图所示,则函数的图象大致是()A. B. C. D.9.下列运算错误的是()A.. B.. C.. D..10.已知关于的分式方程的解是非负数,则的取值范围是()A. B. C.且 D.且11.下列各式中,正确的是()A. B. C.=b+1 D.=a+b12.如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,3),棋了“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)二、填空题(每题4分,共24分)13.经过、两点的圆的圆心的轨迹是______.14.若,则__________(填“”“”或“”)15.已知,则的值是______.16.已知,则分式__________.17.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为_________.18.已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.20.(8分)设,求代数式和的值21.(8分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.22.(10分)如图,以的边和为边向外作等边和等边,连接、.求证:.23.(10分)如图所示,∠A=∠D=90°,AB=DC,AC,BD相交于点M,求证:(1)∠ABC=∠DCB;(2)AM=DM.24.(10分)计算:(1)(2)化简:(3)化简:(4)因式分解:25.(12分)小明和小华的年龄相差10岁.今年,小明的年龄比小华年龄的2倍大;两年后,小华的年龄比小明年龄的大.试问小明和小华今年各多少岁?26.如图,四边形ABCD中,,,,点P自点A向D以1cm/s的速度运动,到D点即停止;点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ分原四边形为两个新四边形;则当P,Q同时出发_____秒后其中一个新四边形为平行四边形.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称的定义即可判断.【详解】A不是轴对称图形,B是轴对称图形,C不是轴对称图形,D不是轴对称图形,故选B.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.2、A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n-2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n-2)-360=180n-720∵180>0∴多边形的内角和与外角和的差会随着n的增大而增大故选A.【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.3、B【分析】根据,且可确定出a、b的正负情况,再判断出点的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵,且,∴∴点在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、B【解析】试题解析:A、∵△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC与D,交AB于E,∴∠ABC=∠ACB=(180°-∠A)=(180°-36°)=72°AD=BD,即∠A=∠ABD=36°∴∠DBC=∠ABC-∠ABD=72°-36°=36°,故A正确;B、条件不足,不能证明,故不对;C、∵∠DBC=36°,∠C=72°∴∠BDC=180°-72°-36°=72°,∠C=∠BDC∵AD=BD∴AD=BD=BC故C正确;D、∵AD=BD∴△BDC的周长等于AB+BC故D正确;故选B.【点睛】本题考查了线段垂直平分线的性质,三角形内角与外角的关系,及等腰三角形的性质;尽量多的得出结论,对各选项逐一验证是正确解答本题的关键.5、D【解析】解:A.添加,可用判定两个三角形全等,故本选项正确;B.添加,可用判定两个三角形全等,故本选项正确;C.由有可得,;再加上可用判定两个三角形全等,故本选项正确;D.添加,后是,无法判定两个三角形全等,故本选项错误;故选.点睛:本题考查全等三角形的判定方法,要熟练掌握、、、、五种判定方法.6、C【解析】试题分析:根据同底幂的乘法,幂的乘方和积运算的乘方法则以及完全平方公式逐一计算作出判断:A.,选项错误;B.,选项错误;C.,选项正确;D.,选项错误.故选C.考点:1.同底幂的乘法;2.幂的乘方和积运算的乘方;3.完全平方公式.7、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.8、B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数的图象经过第一、三象限,且与y轴的正半轴相交可以得出结果.【详解】解:由题意可知:正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数的一次项系数1-k>0,常数项-k>0,∴一次函数的图像经过第一、三象限,且与y轴交于正半轴.故选B.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9、D【分析】根据及整式的除法法则及零指数幂与负指数幂计算.【详解】解:A选项,A正确;B选项,B正确;C选项,C正确;D选项,D错误.故选:D【点睛】本题综合考查了整式乘法的相关运算,熟练掌握整式的除法运算及零指数幂与负指数幂的计算是解题的关键.即.10、C【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】解:去分母得,
m-1=x-1,
解得x=m-2,
由题意得,m-2≥0,
解得,m≥2,
x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,
所以m的取值范围是m≥2且m≠1.
故选C.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.11、B【分析】等式成立的条件是a=0或a=b时;因式分解法化简分式=;根据分式的基本性质化简=b+.【详解】解:A.与在a=0或a=b时才成立,故选项A不正确;B.==,故选项B正确;C.=b+,故选项C不正确;D.不能化简,故选项D不正确;故选:B.【点睛】本题考查分式的化简,解题关键是熟练掌握分式的基本性质.12、A【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:如图所示:棋子“炮”的坐标为(3,2).故选:A.【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.二、填空题(每题4分,共24分)13、线段的垂直平分线【分析】根据线段垂直平分线的性质即可得答案.【详解】∵线段垂直平分线上的点到线段两端点的距离相等,∴经过A、B两点的圆的圆心的轨迹是线段的垂直平分线,故答案为线段AB的垂直平分线【点睛】本题考查了相等垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握性质是解题关键.14、【分析】根据不等式的性质先比较出的大小,然后利用不等式的性质即可得出答案.【详解】∵故答案为:.【点睛】本题主要考查不等式的性质,掌握不等式的性质,尤其是不等式的两边都乘以一个负数时,不等号的方向改变是解题的关键.15、1【分析】将变形为,代入数据求值即可.【详解】故答案为:1.【点睛】本题考查完全平方公式的变形求值,熟练掌握完全平方公式的变形是解题的关键.16、【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.17、40°或140°【分析】根据题意,对等腰三角形分为锐角等腰三角形和钝角等腰三角形进行解答.【详解】解:①如图1,若该等腰三角形为锐角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠A=90°-50°=40°,②如图2,若该等腰三角形为钝角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠BAD=90°-50°=40°,∴∠BAC=180°-40°=140°,综上所述:等腰三角形的顶角度数为40°或140°,故答案为:40°或140°.【点睛】本题考查了等腰三角形的分类讨论问题,以及三角形高的做法,解题的关键是对等腰三角形进行分类,利用数形结合思想进行解答.18、或【解析】到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.【详解】设(x,y).∵点为直线y=−2x+4上的一点,∴y=−2x+4.又∵点到两坐标轴距离相等,∴x=y或x=−y.当x=y时,解得x=y=,当x=−y时,解得y=−4,x=4.故点坐标为或故答案为:或【点睛】考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.三、解答题(共78分)19、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.20、;【分析】直接将代入,再分母有理化即可;先求得,的值,再将变形为,的形式即可求解.【详解】;∵,,∴.【点睛】本题考查了二次根式的混合运算,涉及的知识点有分母有理化、完全平方公式的应用、平方差公式的应用,熟练掌握二次根式的运算法则和完全平方公式的结构特征是解题的关键.21、(1)-27a10;(2),【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式==-27a11÷a=-27a10;(2)原式=[4m2-n2+(m2+2mn+n2)-(4m2-2mn)]÷(-4m)=(4m2-n2+m2+2mn+n2-4m2+2mn)÷(-4m)=(m2+4mn)÷(-4m)=当m=1,n=时,原式==.【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键22、见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB≌△CAD,则BE=CD.【详解】证明:∵△ACE和△ABD都是等边三角形∴AC=AE,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD.∴△EAB≌△CAD(SAS)∴【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件.23、(1)证明见解析;(2)证明见解析.【分析】(1)根据“HL”直接判定即可;(2)由全等三角形的性质可得AC=DB,∠ACB=∠DBC,再根据“等角对等边”得出MC=MB,即可得出结论.【详解】(1)∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形,在Rt△ABC和Rt△DCB中,,∴Rt△ABC≌Rt△DCB(HL),∴∠ABC=∠DCB;(2)∵Rt△ABC≌Rt△DCB,∴AC=DB,∠ACB=∠DBC,∴MC=MB,∴AM=DM.【点睛】本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训资源租赁合同
- 塑料制品物流招标模板
- 外籍员工住宿租赁合同
- 文化创意产业人才聘用合同样本
- 专卖店电气系统聘用协议
- 农业机械检修安全要求
- 北京旅游纪念品采购策略
- 生态保护区用地管理办法
- 生态环境监测站合同范例
- 硬件公司图书室管理办法
- 设备维修岗位危险源辨识风险评价及控制表
- 【课件】第5课+森さんは+7時に+起きます+课件-高中日语新版标准日本语初级上册
- 小学英语-Mum bug's bag教学设计学情分析教材分析课后反思
- 复盘养猪分析:探寻背后的成功秘诀
- 《我国运动员在奥林匹克运动会取得的辉煌成绩》 课件
- 旅行社团队确认书三篇
- 海康2023综合安防工程师认证试题答案HCA
- 《超市水果陈列标准》
- 施美美的《绘画之道》与摩尔诗歌新突破
- 跌倒坠床PDCA循环管理降低住院患者跌倒坠床发生率
- WinCCflexible的传送操作HMI设备设置入门
评论
0/150
提交评论