版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市第七十一中学数学八年级第一学期期末达标检测试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是2.某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲:方案二如图乙所示,绿化带面积为S乙.设,下列选项中正确的是()A. B. C. D.3.如图,是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A. B. C. D.4.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段、分别表示小敏、小聪离B地的距离与已用时间之间的关系,则小敏、小聪行走的速度分别是A.和 B.和C.和 D.和5.下列各命题的逆命题是真命题的是()A.对顶角相等 B.若,则C.相等的角是同位角 D.若,则6.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为A. B. C. D.7.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等 B.一条边和一个锐角对应相等C.两条直角边对应相等 D.一条直角边和一条斜边对应相等8.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、129.已知一次函数的图象经过第一、二、三象限,则的值可以是()A.-2 B.-1 C.0 D.210.下列图形中,不是轴对称图形的是()A. B. C. D.11.已知直线,一个含角的直角三角尺如图叠放在直线上,斜边交于点,则的度数为()A. B. C. D.12.下列命题属于真命题的是()A.同旁内角相等,两直线平行 B.相等的角是对顶角C.平行于同一条直线的两条直线平行 D.同位角相等二、填空题(每题4分,共24分)13.如图,在△ABC中,∠B=60°,AB=12cm,BC=4cm,现有一动点P从点A出发,以2cm/s的速度沿射线AB运动,当点P运动______s时,△PBC为等腰三角形.14.若分式的值为0,则x的值为_______.15.已知a+b=3,ab=1,则a2+b2=____________.16.如图,在中,,点、在的延长线上,是上一点,且,是上一点,且.若,则的大小为__________度.17.已知a+=,则a-=__________18.如图,数轴上所表示的不等式的解是________.三、解答题(共78分)19.(8分)先化简,再从中选一个使原式有意义的数代入并求值;20.(8分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.21.(8分)先化简,再求值.a(a+2)-(a5+3a3)÷a3其中a=-122.(10分)在中,是角平分线,.(1)如图1,是高,,,则(直接写出结论,不需写解题过程);(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;(3)如图3,点在的延长线上,于,则与、之间的数量关系是(直接写出结论,不需证明).23.(10分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.24.(10分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)25.(12分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.26.因式分解:(1).(2).
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:被开方数含分母,不是最简二次根式;被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选C.2、D【分析】由题意可求S甲=2ab-b2,S乙=2ab,代入可求k的取值范围.【详解】∵S甲=2ab-b2,S乙=2ab.∴∵a>b>0∴<k<1故选D.【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.3、B【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:=--===,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.4、D【解析】设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h;设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h,故选D.5、D【分析】先交换原命题的题设和结论部分,得到四个命题的逆命题,然后再分别判断它们是真命题还是假命题.【详解】解:A.“对顶角相等”的逆命题是“相等的角是对顶角”,因为相等的角有很多种,不一定是对顶角,所以逆命题错误,故逆命题是假命题;B.“若,则”的逆命题是“若,则”错误,因为由可得,故逆命题是假命题;C.“相等的角是同位角”的逆命题是“同位角是相等的角”.因为缺少了两直线平行的条件,所以逆命题错误,故逆命题是假命题;D.“若,则”的逆命题是“若,则”正确,故逆命题是真命题;故选:D.【点睛】本题主要考查了逆命题和真假命题的定义,对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.6、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00000000034第一个有效数字前有10个0(含小数点前的1个0),从而.故选C.7、A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.9、D【分析】根据一次函数图象与系数的关系得到b>1,然后对选项进行判断.【详解】解:∵一次函数的图象经过一、二、三象限,
∴b>1.
故选:D.【点睛】本题考查了一次函数图象与系数的关系:一次函数(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).10、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.故选:C.【点睛】此题考查轴对称图形的概念,解题关键在于寻找对称轴,图形两部分折叠后可重合.11、D【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB.【详解】∵含角的直角三角尺∴∠A=30°,∠ACB=60°∵∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.12、C【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(每题4分,共24分)13、4或1【分析】分①当点P在线段AB上时,②当点P在AB的延长线上时两种情况讨论即可.【详解】解:如图①,当点P在线段AB上时,∵∠B=60°,△PBC为等腰三角形,∴△PBC是等边三角形,∴PB=PC=BC=4cm,AP=AB-BP=1cm,∴运动时间为1÷2=4s;如图②,当点P在AB的延长线上时,∵∠CBP=110°-∠ABC=120°,∴BP=BC=4cm.此时AP=AB+BP=16cm,∴运动时间为16÷2=1s;综上所述,当点P运动4s或1s时,△PBC为等腰三角形,故答案为:4或1.【点睛】本题主要考了等边三角形的性质和判定,等腰三角形的判定,找全两种情况是解题关键.14、-1【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-1.
故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.15、7【解析】试题解析:故答案为7.16、10【解析】根据三角形外角的性质,结合已知,得∠E=∠CDG,同理,,∠CDG=∠ACB,,得出∠ACB=∠B,利用三角形内角和180°,计算即得.【详解】∵DE=DF,CG=CD,∴∠E=∠EFD=∠CDG,∠CDG=∠CGD=∠ACB,又∵AB=AC,∴∠ACB=∠B=(180°-∠A)=(180°-100°)=40°,∴∠E=,故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.17、【解析】通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.18、【分析】根据数轴判断解集即可.【详解】由图知不等式解集为:,故答案为:.【点睛】本题是对不等式知识的考查,熟练掌握数轴上表示不等式解集是解决本题的关键.三、解答题(共78分)19、,1.【分析】先将括号里的通分,再利用分式的除法法则计算,使原式有意义的数即这个数不能使分式的分母为0,据此选择即可.【详解】解:原式为使原式有意义所以取,则【点睛】本题考查了分式的混合运算,熟练掌握分式的通分和约分是进行分式加减乘除运算的关键.20、(1);(2),证明见解析.【分析】(1)根据三角形的外角定理,即可得到,再根据角平分线的性质可求得,最后利用三角形的外角定理即可求得.(2)根据三角形的外角定理,可求得,,由平分可知,进而得到,即可得三角之间的等量关系为.【详解】(1)∵是的外角,∴∵,∴∵是的平分线∴∵是的外角,∴∵,∴(2),证明如下:∵是的外角.∴∵是的外角.∴∵是的平分线,∴∴∴即:.【点睛】本题主要考查了三角形的外角定理和角平分线的性质,熟练掌握性质才能灵活应用性质解题.21、2a-3,-5【分析】根据单项式乘多项式法则和多项式除以单项式法则化简,然后代入求值即可.【详解】解:原式=a2+2a-a2-3=2a-3当a=-1时,原式=-2-3=-5【点睛】此题考查的是整式的化简求值题,掌握单项式乘多项式法则和多项式除以单项式法则是解决此题的关键.22、(1)11;(2)∠DEF=(∠C-∠B),证明见解析;(3)∠DEF=(∠C-∠B),证明见解析【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°-∠C,进而得出∠DAE=(∠C-∠B),由此即可解决问题.
(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B).
(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B)不变.【详解】(1)∵AD平分∠BAC,
∴∠CAD=∠BAC,
∵AE⊥BC,
∴∠CAE=90°-∠C,
∴∠DAE=∠CAD-∠CAE
=∠BAC-(90°-∠C)
=(180°-∠B-∠C)-(90°-∠C)
=∠C-∠B
=(∠C-∠B),
∵∠B=52°,∠C=74°,
∴∠DAE=(74°-52°)=11°;
(2)结论:∠DEF=(∠C-∠B).
理由:如图2,过A作AG⊥BC于G,
∵EF⊥BC,
∴AG∥EF,
∴∠DAG=∠DEF,
由(1)可得,∠DAG=(∠C-∠B),
∴∠DEF=(∠C-∠B);
(3)仍成立.
如图3,过A作AG⊥BC于G,
∵EF⊥BC,
∴AG∥EF,
∴∠DAG=∠DEF,
由(1)可得,∠DAG=(∠C-∠B),
∴∠DEF=(∠C-∠B),
故答案为∠DEF=(∠C-∠B).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,熟记各性质并准确识图是解题的关键.23、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·OA,∴PH=OA=×15=12,当y=12时,x+15=12,解得x=4,∴P2(4,12),②当点P在AB的延长线上时,(i)若点Q在B,P之间,且PQ=OD,∠OPQ=∠POD时,△POQ≌△OPD,作OM⊥AB于M,PN⊥OB于N,则PN=OM=12,∴点P的纵坐标为-12,当y=-12时,x+15=-12,解得x=36,∴P3(36,-12),(ii)若点Q在BP的延长线上或BP的反向延长线上,都不存在满足条件的P,Q两点.综上所述,满足条件的点P为P1(12,6),P2(4,12),P3(36,-12).【点睛】本题考查待定系数法求解析式,坐标与图形,全等三角形的性质等,熟练理解全等三角形的性质并灵活对问题进行分类讨论是解题关键.24、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌形象维护细则
- 玻璃制品管理办法
- 商标许可租赁代理合同
- 临时演员加入直播节目合同
- 厨房改造设备安装协议
- 珠宝首饰高速公路合同管理办法
- 房地产评估助理聘任合同
- 电力公司电梯井道施工项目合同
- 城市绿地草坪绿化合同
- 烟草公司副总经理聘用合同范本
- 职业生涯人物访谈报告(采访教师)
- 四年级上册美术课件-第6课 眼镜的设计丨浙美版 (共10张PPT)
- 蚊类防制技术规范(2020年版)
- 水 泵 安 装 记 录
- 类比-完整版获奖课件
- 物体的质量及其测量 完整版课件
- pcs-9882ad说明书-国内中文版
- 外研版六年级上册英语期中试卷(含听力音频)
- 环境和物体表面的清洁与消毒制度
- QGDW-11513.1-2022-变电站智能机器人巡检系统技术规范第1部分
- 农村基础设施建设太阳能路灯施工方案
评论
0/150
提交评论