四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题含解析_第1页
四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题含解析_第2页
四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题含解析_第3页
四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题含解析_第4页
四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川中江县春季联考2025届数学八年级第一学期期末考试模拟试题考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.10 B.11C.12 D.132.--种饮料有大、中、小种包装,一个中瓶比个小瓶便宜角,一个大瓶比一个中瓶加上一个小瓶贵角,若大、中、小各买瓶,需要元角.设小瓶单价是角,大瓶的单价是角,可列方程组为()A. B.C. D.3.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.4.下面式子从左边到右边的变形中是因式分解的是()A. B.C. D.5.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱6.若要使等式成立,则等于()A. B. C. D.7.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.258.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=39.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是10.在,,,0,这四个数中,为无理数的是()A. B. C. D.0二、填空题(每小题3分,共24分)11.已知点A(3+2a,3a﹣5),点A到两坐标轴的距离相等,点A的坐标为_____.12.计算:___________.13.计算的结果等于.14.不等式组的解集为,则不等式的解集为__________15.关于的多项式展开后不含的一次项,则______.16.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.

17.如图,△ABC≌△ADE,∠B=80°,∠C=30°,则∠E的度数为________.18.一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为_____.三、解答题(共66分)19.(10分)(模型建立)(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;(模型应用)(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.20.(6分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?21.(6分)已知一次函数与的图象都经过点且与轴分别交于,两点.(1)分别求出这两个一次函数的解析式.(2)求的面积.22.(8分)阅读下列解方程组的部分过程,回答下列问题解方程组现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得1(2y+5)﹣2y=1.……解法二:①﹣②,得﹣2x=2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来23.(8分)已知,求x3y+xy3的值.24.(8分)甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题(1)甲登山的速度是每分钟米;乙在A地提速时,甲距地面的高度为米;(2)若乙提速后,乙的速度是甲登山速度的3倍;①求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;②乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;(3)当x为多少时,甲、乙两人距地面的高度差为80米?25.(10分)请在右边的平面直角坐标系中描出以下三点:、、并回答如下问题:在平面直角坐标系中画出△ABC;在平面直角坐标系中画出△A′B′C′;使它与关于x轴对称,并写出点C′的坐标______;判断△ABC的形状,并说明理由.26.(10分)如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形的面积公式即可得到AD的长度,再由最短路径的问题可知PB+PD的最小即为AD的长.【详解】∵∴∵EF垂直平分AB∴点A,B关于直线EF对称∴∴,故选:C.【点睛】本题主要考查了最短路径问题,熟练掌握相关解题技巧及三角形的高计算方法是解决本题的关键.2、A【分析】设设小瓶单价为x角,大瓶为y角,根据题意列出二元一次方程组,求出方程组的解即可.【详解】解:设小瓶单价为x角,大瓶为y角,则中瓶单价为(2x-2)角,可列方程为:,故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.3、D【解析】试题分析:根据平行线的性质,可得∠3=∠1,根据两直线垂直,可得所成的角是∠3+∠2=90°,根据角的和差,可得∠2=90°-∠3=90°-60°=30°.故选D.考点:平行线的性质4、C【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】解:A.x2−x−2=x(x−1)-2错误;B.(a+b)(a−b)=a2−b2错误;C.x2−4=(x+2)(x−2)正确;D.x−1=x(1−)错误;故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.5、D【分析】A、观察函数图象,可得出:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:,解得:,∴yA=3x-45(x≥25),当x=35时,yA=3x-45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:,解得:,∴yB=3x-100(x≥50),当x=70时,yB=3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.6、B【分析】利用A=(3x+4y)2-(3x-4y)2,然后利用完全平方公式展开合并即可.【详解】解:∵(3x+4y)2=9x2+24xy+16y2,(3x-4y)2=9x2-24xy+16y2,

∴A=9x2+24xy+16y2-(9x2-24xy+16y2)=48xy.

故选:B.【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2,掌握公式是关键.7、C【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.8、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.9、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数10、C【解析】根据无理数的定义:无限不循环小数,进行判断即可.【详解】-3,,0为有理数;为无理数.故选:C.【点睛】本题考查无理数,熟记无理数概念是解题关键.二、填空题(每小题3分,共24分)11、(19,19)或(,-)【解析】根据点A到两坐标轴的距离相等,分两种情况讨论:3+2a与3a﹣5相等;3+2a与3a﹣5互为相反数.【详解】根据题意,分两种情况讨论:①3+2a=3a﹣5,解得:a=8,∴3+2a=3a﹣5=19,∴点A的坐标为(19,19);②3+2a+3a﹣5=0,解得:a=,∴3+2a=,3a﹣5=﹣,∴点A的坐标为(,﹣).故点A的坐标为(19,19)或(,-),故答案为:(19,19)或(,-).【点睛】本题考查了点的坐标,解决本题的关键是根据点A到两坐标轴的距离相等,分两种情况讨论.12、1【分析】分别利用零指数幂和负整数指数幂以及乘方运算化简各项,再作加减法.【详解】解:==1,故答案为:1.【点睛】本题考查了实数的混合运算,解题的关键是掌握零指数幂和负整数指数幂以及乘方的运算法则.13、【分析】根据立方根的定义求解可得.【详解】解:=.故答案为.【点睛】本题主要考查立方根,掌握立方根的定义是解题的关键.14、【分析】根据题意先求出a和b的值,并代入不等式进而解出不等式即可.【详解】解:,解得,∵不等式组的解集为,∴,解得,将代入不等式即有,解得.故答案为:.【点睛】本题考查解一元一次不等式组以及解一元一次不等式,熟练掌握相关求解方法是解题的关键.15、1【分析】先将多项式展开,再合并同类项,然后根据题意即可解答.【详解】解:∵(mx+4)(2-3x)

=2mx-3mx2+8-12x

=-3mx2+(2m-12)x+8

∵展开后不含x项,

∴2m-12=0,

即m=1,

故答案为:1.【点睛】本题考查了多项式乘以多项式的法则的应用,主要考查学生的化简能力.16、100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,

∴∠1=∠A+∠ABO=50°+20°=70°,

∵∠ACO=30°,

∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.17、30°【分析】根据△ABC≌△ADE得到∠E=∠C即可.【详解】解:∵△ABC≌△ADE,∴∠C=∠E,∵∠C=30°,∴∠E=30°.故答案为:30°.【点睛】本题考查了全等三角形的性质,全等三角形的对应角相等,对应边相等,难度不大.18、13.3【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,AB=2.1,BC=2.2,CD=2.33,DE=2.1,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=2.2,DH=DE=2.1.∴GH=2.2+2.33+2.1=6.96,FA=PA=PG﹣AB﹣BG=6.96﹣2.1﹣2.2=2.33,EF=PH﹣PF﹣EH=6.96﹣2.33﹣2.1=2.2.∴六边形的周长为2.1+2.2+2.33+2.1+2.2+2.33=13.3.故答案为:13.3.【点睛】本题考查了等边三角形的性质及判定定理:解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.三、解答题(共66分)19、(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(,).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则,解得:,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(,).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=,∴−2x+6=,∴D(,),此时,ED=PF=,AE=BF=,BP=PF−BF=<6,符合题意,综上所述,D点坐标为:(4,−2)或(,)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.20、(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120万元、180万元;(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【解析】(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,根据建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元,甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元,列方程组求解;

(2)根据(1)求出的值代入求解.【详解】解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x万元、y万元.由题意,得解得答:建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120、180万元.(2)3×120+6×180=1440(万元).答:乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,找出等量关系,列方程组求解.21、(1)和;(2)【分析】(1)把分别代入和可求出和,从而得到一次函数的解析式;(2)通过解析式求出B、C的坐标,即得到OA、BC的长度,从而算出面积.【详解】(1)把分别代入和得,,,这两个函数分别为和.(2)在和中,令,可分别求得和,,,又,,,.【点睛】本题考查了一次函数的图象和性质,正确求出直线与坐标轴的交点是解题的关键.22、(1)代入消元法;加减消元法;基本思路都是消元;(2).【分析】(1)分析两种解法的具体方法,找出两种方法的共同点即可;(2)将两种方法补充完整即可.【详解】解:(1)解法一使用的具体方法是代入消元法,解法二使用的具体方法是加减消元法,以上两种方法的共同点是基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);故答案为代入消元法,加减消元法,基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);(2)方法一:由①得:x=2y+5③,把③代入②得:1(2y+5)﹣2y=1,整理得:4y=﹣12,解得:y=﹣1,把y=﹣1代入③,得x=﹣1,则方程组的解为;方法二:①﹣②,得﹣2x=2,解得:x=﹣1,把x=﹣1代入①,得﹣1﹣2y=5,解得:y=﹣1,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23、1【分析】先由求出xy和x2+y2的值,把x3y+xy3分解因式后代入计算即可.【详解】∵,∴xy==3-2=1,x2+y2==3+2+2+3-2+2=1,∴x3y+xy3=xy(x2+y2)=1.【点睛】本题考查了二次根式的混合运算,以及因式分解的应用,熟练掌握各知识点是解答本题的关键.24、(1)10,1;(2)①,②能够实现.理由见解析;(3)当x为2.5或10.5或3时,甲、乙两人距地面的高度差为80米.【分析】(1)由时间,速度,路程的基本关系式可解;(2)①分段代入相关点的坐标,利用待定系数法来求解即可;②分别计算甲乙距离地面的高度再比较即可;(3)求出甲的函数解析式,分0≤x≤2时,2<x≤11时,11<x≤20时来讨论即可求解.【详解】(1)甲登山的速度为:(300﹣2)÷20=10米/分,2+10×2=1米,故答案为10,1.(2)①V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,∵直线经过A(2,30),(11,300),∴解得∴当2<x≤11时,y=30x﹣30设当0≤x≤2时,乙的函数关系式为y=ax,∵直线经过A(2,30)∴30=2a解得a=15,∴当0≤x≤2时,y=15x,综上,②能够实现.理由如下:提速5分钟后,乙距地面高度为30×7﹣30=180米.此时,甲距地面高度为7×10+2=170米.180米>170米,所以此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论