版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省长沙市开福区青竹湖湘一外国语学校数学八上期末调研试题末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或2.如图所示.在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于()A.6cm B.5cm C.4cm D.3cm3.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个4.某班学生周末乘汽车到外地参加活动,目的地距学校,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车速度的2倍,如果设慢车的速度为,那么可列方程为()A. B. C. D.5.估计的值在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间6.下列长度的三条线段不能构成直角三角形的是()A.3、4、5 B.5、12、13 C.2、4、 D.6、7、87.若x2mx9是一个完全平方式,那么m的值是()A.9 B.18 C.6 D.68.若一个多边形的内角和为720°,则该多边形为()边形.A.四 B.五 C.六 D.七9.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),如图中的折线表示与之间的函数关系,下列说法:①动车的速度是千米/小时;②点B的实际意义是两车出发后小时相遇;③甲、乙两地相距千米;④普通列车从乙地到达甲地时间是小时,其中不正确的有()A.个 B.个 C.个 D.个10.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80859095人数/人1252则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90二、填空题(每小题3分,共24分)11.计算:____.12.若分式的值为0,则的值为______.13.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.14.若,则分式的值为__________.15.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为_____16.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.17.在-2,π,,,0中,是无理数有______个.18.已知、,满足,则的平方根为________.三、解答题(共66分)19.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(6分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).21.(6分)四边形是由等边和顶角为120°的等腰三角形拼成,将一个60°角顶点放在点处,60°角两边分别交直线于,交直线于两点.(1)当都在线段上时,探究之间的数量关系,并证明你的结论;(2)当在边的延长线上时,求证:.22.(8分)(1)化简:(2)解不等式组:23.(8分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)求△ABC的面积.24.(8分)解不等式组:,并求出它的最小整数解.25.(10分)请在下列横线上注明理由.如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.证明:∵(已知),∴(______),∴(______),∵(已知),∴(______),∵点到和的距离相等(已知),∴是的角平分线(______),∴(角平分线的定义),∴(______),即平分(角平分线的定义),∴点到和的距离相等(______).26.(10分)(1)因式分解:(2)先化简,再求值:,其中
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、D【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,即可求出∠EAC,根据含30°角的直角三角形性质求出即可.【详解】∵在△ABC中,∠ACB=90°,∠B=15°∴∠BAC=90°-15°=75°∵DE垂直平分AB,BE=6cm∴BE=AE=6cm,∴∠EAB=∠B=15°∴∠EAC=75°-15°=60°∵∠C=90°∴∠AEC=30°∴AC=AE=×6cm=3cm故选:D【点睛】本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.3、B【解析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【详解】解:分式有,,共2个,故选:B.【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.4、A【分析】设慢车的速度为,再利用慢车的速度表示出快车的速度,根据所用时间差为1小时列方程解答.【详解】解:设慢车的速度为,则快车的速度为2xkm/h,慢车所用时间为,快车所用时间为,可列方程:.
故选:A.【点睛】本题考查分式方程的应用,找到关键描述语,找到等量关系是解题的关键.5、C【详解】解:由36<38<49,即可得6<<7,故选C.6、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵52+122=132,∴此三角形是直角三角形,不符合题意;C、∵22+()2=42,∴此三角形是直角三角形,不符合题意;D、∵62+72≠82,∴此三角形不是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、D【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9是一个完全平方式,
∴x2+mx+9=(x±3)2,
∴m=±6,
故选D.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8、C【分析】设多边形为n边形,由多边形的内角和定理列出方程求解即可.【详解】解:设多边形为n边形.由题意得:(n-2)·180°=720°,解得:n=6.故选C.【点睛】本题考查多边形的内角和定理,n边形的内角和为:(n-2)·180°.9、B【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是=千米/小时,设动车的速度为x千米/小时,
根据题意,得:3x+3×=1000,
解得:x=250,
动车的速度为250千米/小时,错误;④由图象知x=t时,动车到达乙地,
∴x=12时,普通列车到达甲地,
即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.10、B【解析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.二、填空题(每小题3分,共24分)11、【分析】根据多项式乘以多项式的计算法则计算即可得到答案.【详解】,故答案为:.【点睛】此题考查整式乘法:多项式乘以多项式,用第一个多项式的每一项分别乘以另一个多项式的每一项,并把结果相加,正确掌握多项式乘以多项式的计算法则是解题的关键.12、1【分析】根据分式的值为0的条件和分式有意义条件得出4-x1=0且x+1≠0,再求出即可.【详解】解:∵分式的值为0,
∴4-x1=0且x+1≠0,
解得:x=1,
故答案为:1.【点睛】本题考查分式的值为零的条件和分式有意义的条件,能根据题意得出4-x1=0且x+1≠0是解题的关键.13、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.14、1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【详解】∵∴x+y=2xy∴====1故答案为:1.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.15、8【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2−PQ2=289−225=64,∴QR=8,即字母A所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.16、2.【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=B′E=BE=2,DF=2,∴GD=B′F=2,∴B′G=DF=2,∵AB=10,∴AG=10﹣6=4,∴AB′=2.考点:1轴对称;2等边三角形.17、1【分析】无理数是指无限不循环小数,根据定义判断即可.【详解】解:无理数有π,,共1个,故答案为:1.【点睛】本题考查了对无理数定义的理解和运用,注意:无理数包括:①含π的,②一些有规律的数,③开方开不尽的根式.18、【分析】利用算术平方根及绝对值的非负性求出x、y的值,即可代入求出的平方根.【详解】∵,∴x-1=0,y+2=0,∴x=1,y=-2,∴=1+8=9,∴的平方根为,故答案为:.【点睛】此题考查算术平方根及绝对值的非负性,求一个数的平方根,能根据题意求出x、y的值是解题关键.三、解答题(共66分)19、(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2);(3)360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB+∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.20、(1)12x3y2;(2)a2+3ab.【分析】(1)根据分式的乘除法以及积的乘方的运算法则计算即可.
(2)应用完全平方公式,以及单项式乘多项式的方法计算即可.【详解】(1)•(6x2y)2;=•(36x4y2)=12x3y2;(2)(a+b)2+b(a﹣b)=a2+2ab+b2+ab﹣b2=a2+3ab.【点睛】本题主要考查了分式的乘除,单项式乘多项式以及完全平方公式的应用,要熟练掌握.21、(1)BM+AN=MN,证明见解析;(2)见解析;【分析】(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=QN,再根据AQ+AN=QN整理即可得证;
(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;【详解】(1)证明:∵四边形是由等边和顶角为120°的等腰三角形拼成,∴∠CAD=∠CBD=60°+30°=90°把△DBM绕点D逆时针旋转120°得到△DAQ,
则DM=DQ,AQ=BM,∠ADQ=∠BDM,∠CBD=∠QAD=90°
∴∠CAD+∠QAD=180°
∴N、A、Q三点共线∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,
∴∠QDN=∠MDN=60°,
∵在△MND和△QND中,∴MN=QN,
∵QN=AQ+AN=BM+AN,
∴BM+AN=MN;(2)MN+AN=BM.
理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,
则DN=DP,AN=BP,
∵∠DAN=∠DBP=90°,
∴点P在BM上,
∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,
∴∠MDP=∠MDN=60°,
∵在△MND和△MPD中,∴△MND≌△MPD(SAS),
∴MN=MP,
∵BM=MP+BP,
∴MN+AN=BM;
∴MN=BM-AN;【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键22、(1);(1)﹣1<x≤1【分析】(1)根据二次根式的性质化简,然后根据合并同类二次根式法则计算即可;(1)分别求出两个不等式的解集,然后取公共解集即可.【详解】解:(1)===;(1)解不等式①得:x>﹣1;解不等式②得:x≤1;所以,不等式组的解集为:﹣1<x≤1.【点睛】此题考查的是二次根式的运算和解一元一次不等式组,掌握二次根式的性质、合并同类二次根式法则和不等式的解法是解题关键.23、(1)图见解析,点A1的坐标(3,−4);点B1的坐标(1,−2);点C1的坐标(1,−1);(2)1【分析】(1)分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;
(2)利用割补法求解可得.【详解】(1)如图,△A1B1C1即为所求图形:点A1的坐标(3,−4),点B1的坐标(1,−2),点C1的坐标(1,−1);(2)S△ABC=4×3−−−=12−2−3−2=1.【点睛】本题主要考查了作图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- SMTP服务器租赁合同范本
- 教育设施爱心基金管理办法
- 能源企业隔音墙施工合同
- 人工智能项目投资担保人还款协议
- 教育咨询高级顾问聘用合同样本
- 旅游设施施工合同备案说明
- 园林绿化施工管理合同样本
- 教育公益捐赠管理办法
- 环保设施清洁施工合同建筑膜
- 体育馆化粪池建设协议
- 小区安防工作规范
- 北师大数学六年级下册第一单元《圆柱与圆锥》单元整体解读课件
- 2023年江苏专转本英语真题及解析(全)
- 幼儿园中班美术:《向日葵》 课件
- 自动化控制仪表安装工程定额
- 普希金《驿站长》阅读练习及答案
- 《生物多样性公约》及国际组织课件
- 个人信用报告异议申请表
- Unit 4 Lesson 1 Avatars 教案 高中英语新北师大版必修第二册(2022-2023学年)
- Q∕SY 05012.1-2016 城镇燃气安全生产检查规范 第1部分:天然气
- 部编人教版九年级历史下册教案(全册)
评论
0/150
提交评论