内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题含解析_第1页
内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题含解析_第2页
内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题含解析_第3页
内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题含解析_第4页
内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古赤峰市翁牛特旗2025届数学八上期末复习检测试题试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于B(a,﹣a),与y轴交于点A(0,b).其中a、b满足(a+2)2+=0,那么,下列说法:(1)B点坐标是(﹣2,2);(2)三角形ABO的面积是3;(3);(4)当P的坐标是(﹣2,5)时,那么,,正确的个数是()A.1个 B.2个 C.3个 D.4个2.下列说法正确的是()A.计算两个班同学数学成绩的平均分,可以用两个班的平均分除以2即可;B.10,9,10,12,11,12这组数据的众数是10;C.若,,,…,的平均数是,那么D.若,,,…,的方差是,那么,,,…方差是.3.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×4.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别一点为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为,则的值为()A. B. C. D.6.如图,把纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A. B.C. D.7.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D8.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是09.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F10.下列条件中能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°二、填空题(每小题3分,共24分)11.观察下列关于自然数的式子:,,,,,…,根据上述规律,则第个式子化简后的结果是_____.12.如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________.13.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.14.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______.15.已知点与点关于直线对称,那么等于______.16.已知(a-2)2+=0,则3a-2b的值是______.17.比较大小:_____1.(填“>”、“=”或“<”)18.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.三、解答题(共66分)19.(10分)如图,平行四边形的对角线与相交于点,点为的中点,连接并延长交的延长线于点,连接.(1)求证:;(2)当,时,请判断四边形的形状,并证明你的结论.(3)当四边形是正方形时,请判断的形状,并证明你的结论.20.(6分)小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600名八年级学生,则晚上学习时间超过1.5小时的约有多少名学生?21.(6分)先化简,再求值:,其中.22.(8分)如图,点F在线段AB上,点E,G在线段CD上,FGAE,∠1=∠1.(1)求证:ABCD;(1)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.23.(8分)先化简,再求值:(x+1)÷(2+),其中x=﹣.24.(8分)如图,在中,,,,M在AC上,且,过点A(与BC在AC同侧)作射线,若动点P从点A出发,沿射线AN匀速运动,运动速度为,设点P运动时间为t秒.(1)经过_________秒时,是等腰直角三角形?(2)经过_________秒时,?判断这时的BM与MP的位置关系,说明理由.(3)经过几秒时,?说明理由.(4)当是等腰三角形时,直接写出t的所有值.25.(10分)(1)计算:()×3(2)解方程组26.(10分)如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,∠A=60°.(1)求证:△ABC是等边三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【分析】(1)根据非负数的性质即可求得a的值,即可得到B(﹣2,2);(2)利用三角形面积公式求得即可判断;(3)求得△OBC和△AOB的面积即可判断;(4)S△BCP和S△AOB的值即可判断.【详解】解:(1)∵a、b满足(a+2)2+=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(0,3),点B的坐标为(﹣2,2),故(1)正确;(2)三角形ABO的面积=×OA×=×3×2=3,故(2)正确;(3)设直线l2的解析式为y=kx+c(k≠0),将A、B的坐标代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3,令y=0,则x=﹣6,∴C(﹣6,0),∴S△OBC==6,∵S△ABO=3,∴S△OBC:S△AOB=2:1;故(3)正确;(4)∵P的坐标是(﹣2,5),B(﹣2,2),∴PB=5﹣2=3,∴S△BCP==6,S△AOB=×3×2=6,∴S△BCP=S△AOB.故(4)正确;故选:D.【点睛】本题考查了两条直线相交问题,三角形的面积,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.2、C【分析】根据平均数,众数,方差的定义和意义,逐一判断选项,即可求解.【详解】∵两个班同学数学成绩的平均分=两个班总成绩÷两个班级总人数,∴A错误,∵10,9,10,12,11,12这组数据的众数是10和12,∴B错误,∵,,,…,的平均数是,那么,∴C正确,∵若,,,…,的方差是,那么,,,…方差是,∴D错误,故选C.【点睛】本题主要考查平均数,众数,方差的定义和意义,掌握众数的定义,平均数,方差的定义和公式,是解题的关键.3、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.4、A【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,∴S丁2>S丙2>S乙2>S甲2,∴射箭成绩最稳定的是甲;故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故=0,解得:a=.故答案选:D.【点睛】本题考查的知识点是作图—基本作图,坐标与图形性质,角平分线的性质,解题的关键是熟练的掌握作图—基本作图,坐标与图形性质,角平分线的性质作图—基本作图,坐标与图形性质,角平分线的性质.6、C【分析】根据折叠性质得出∠A=∠A′,根据三角形外角性质得出∠1=∠DOA+∠A,∠DOA=∠2+∠A′,即可得出答案.【详解】如图,∵根据折叠性质得出∠A=∠A′,

∴∠1=∠DOA+∠A,∠DOA=∠2+∠A′,

∴∠1=∠A+∠2+∠A,

∴2∠A=∠1-∠2,

故选C.【点睛】本题考查三角形折叠角度问题,掌握折叠的性质和三角形外角性质是关键.7、B【分析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】,,,,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.8、A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.9、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【点睛】本题主要考查你对三角形全等的判定等考点的理解.10、A【解析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【详解】A.符合全等三角形的SSS,能作出唯一三角形,故该选项符合题意,B.AB+AC=BC,不符合三角形三边之间的关系,不能作出三角形;故该选项不符合题意,C.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,D.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,故选A.【点睛】此题主要考查由已知条件作三角形,应用了全等三角形的判定和三角形三边之间的关系.熟练掌握全等三角形的判定定理是解题关键.二、填空题(每小题3分,共24分)11、【分析】由前几个代数式可得,减数是从2开始连续偶数的平方,被减数是从2开始连续自然数的平方的4倍,由此规律得出答案即可.【详解】∵①②③④⑤∴第个代数式为:.故答案为:.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解题的关键.12、(-a,b)【分析】观察图形可知每四次对称为一个循环组依次循环,用2013除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【详解】点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A点与第三次变换的位置相同,在第二象限,坐标为(-a,b).故答案为(-a,b).【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.13、AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.14、3【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为3,故答案为3.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.15、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为1.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.16、1【分析】根据非负数的性质列式求出、b的值,然后代入代数式进行计算即可得解.【详解】∵(-2)2+=2,∴-2=2,b+2=2,解得:=2,b=-2,则3-2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.17、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.18、0.1【分析】利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.三、解答题(共66分)19、(1)见解析;(2)平行四边形ABDF是矩形,见解理由析;(3)△FBC为等腰直角三角形,证明见解析【分析】(1)利用平行四边形的性质,证明AB=CD,然后通过证明△AGB≌△DGF得出AB=DF即可解决问题;

(2)结论:四边形ABDF是矩形.先证明四边形ABDF是平行四边形,再根据对角线相等的平行四边形是矩形判断即可;(3)结论:△FBC为等腰直角三角形.由正方形的性质得出∠BFD=45°,∠FGD=90°,根据平行四边形的性质推出BF=BC即可解决问题.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠FDG=∠BAG,∵点G是AD的中点,∴AG=DG,又∵∠FGD=∠BGA,∴△AGB≌△DGF(ASA),∴AB=DF,∴DF=DC.(2)结论:四边形ABDF是矩形,理由:∵△AGB≌△DGF,∴GF=GB,又∵DG=AG,∴四边形ABDF是平行四边形,∵DG=DC,DC=DF,∴DF=DG,在平行四边形ABCD中,∵∠ABC=120°,∴∠ADC=120°,∴∠FDG=60°,∴△FDG为等边三角形,∴FG=DG,∴AD=BF,∴四边形ABDF是矩形.(3)当四边形ABDF是正方形时,△FBC为等腰直角三角形.证明:∵四边形ABDF是正方形,∴∠BFD=45°,∠FGD=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FBC=∠FGD=90°,∴∠FCB=45°=∠BFD,∴BF=BC,∴△FBC为等腰直角三角形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5小时的约有450名学生.【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;

(2)根据人数、中位数的定义求解可得;

(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,

∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有(人)答:晚上学习时间超过1.5小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、,1【分析】先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.【详解】解:当x=-2时,原式=24-1=1.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.22、()见解析;(1)50°【分析】(1)欲证明AB∥CD,只要证明∠1=∠3即可;(1)根据∠1+∠4=90°,想办法求出∠4即可解决问题.【详解】解:(1)证明:如图,∵FG∥AE,∴∠1=∠3,∵∠1=∠1,∴∠1=∠3,∴AB∥CD;(1)∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=100°,∴∠ABD=180°﹣∠D=80°,∵BC平分∠ABD,∴∠4=∠ABD=40°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣40°=50°.【点睛】本题考察了平行线的性质与判定,角平分线的定义,直角三角形的两锐角互余等知识,熟知相关定理是解题关键.23、,【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(x+1)÷(2+)=(x+1)÷=(x+1)=,当x=﹣时,原式==.故答案为:,【点睛】本题考查了分式的化简求值,熟练掌握分式的乘法,除法运算法则,通分约分等运算方法.24、(1)6;(2)2,位置关系见解析(3)8,见解析(4)2,【分析】(1)利用等腰直角三角形的性质即可解答.(2)根据全等三角形的性质即可解答.(3)根据直角三角形两个锐角互余,可证明,进一步证明,即证明,即得出答案.(4)根据题意可求出MB的值和BP的最小值,可推断MB<BP,即该等腰三角形不可能是MB=BP.再根据讨论①MP=MB和②MP=BP两种情况结合勾股定理,即可解答.【详解】(1)当是等腰直角三角形时,故答案为6(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论