版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆师大附中八年级数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)3.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.304.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为()A.6 B.3 C.4 D.25.如图,已知,则()A. B. C. D.6.一次函数的图象如图所示的取值范围是()A. B. C. D.7.如图,点在线段上,且,,补充一个条件,不一定使成立的是()A. B. C. D.8.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架 B.三角形房架C.照相机的三脚架 D.放缩尺9.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.10.下列各式中,不是二次根式的是()A. B. C. D.11.如图,中,,的垂直平分线交于点,垂足为点.若,则的长为()A. B. C. D.12.2的平方根是()A.2 B.-2 C. D.二、填空题(每题4分,共24分)13.若最简二次根式与能够合并,则=__________.14.按一定规律排成的一列数依次为……照此下去,第个数是________.15.的绝对值是.16.在△ABC中,AB=AC,∠B=60°,则△ABC是_______三角形.17.如图,直线,平分,交于点,,那么的度数为________.18.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?20.(8分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.21.(8分)已知:如图,四边形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,点E在BC上,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.(1)求线段DC的长度;(2)求△FED的面积.22.(10分)已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.23.(10分)先化简代数式:,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.(10分)已知:关于的方程.当m为何值时,方程有两个实数根.25.(12分)先化简,再求值:,其中x=.26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在中,是边上的中线,与的“广益值”就等于的值,可记为(1)在中,若,,求的值.(2)如图2,在中,,,求,的值.(3)如图3,在中,是边上的中线,,,,求和的长.
参考答案一、选择题(每题4分,共48分)1、C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.2、D【解析】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.3、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.4、B【分析】利用垂直平分线的性质得到AD=BD=6,∠A=∠ABD=30°,再根据∠C=90°得到∠CBD=30°,从而根据30°所对的直角边是斜边的一半得到结果.【详解】解:∵DE垂直平分AB,∴AD=BD=6,∠A=∠ABD=30°,∵∠C=90°,∴∠CBD=∠ABC-∠ABD=30°,∴CD=BD=3,故选B.【点睛】本题考查了垂直平分线的性质,含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.5、D【分析】根据三角形内角和定理求出的值,再根据三角形的外角求出的值,再根据平角的定义即可求出的值.【详解】∵,∴,∵,∴,∴.故选D.【点睛】本题考查三角形的内角和定理和外角的性质,解题的关键是根据三角形外角的性质求出的值.6、D【分析】y<0也就是函数图象在x轴下方的部分,观察图象找出函数图象在x轴下方的部分对应的自变量的取值范围即可得解.【详解】根据图象和数据可知,当y<0即图象在x轴下侧时,x>2,故选D.【点睛】本题主要考查了一次函数与不等式,数形结合思想,准确识图是解题的关键.7、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL依次对各选项分析判断即可.【详解】∵,∴BC=EF.A.若添加,虽然有两组边相等,但∠1与∠2不是它们的夹角,所以不能判定,符合题意;B.若添加在△ABC和△DEF中,∵,,BC=EF,∴(SAS),故不符合题意;C.若添加在△ABC和△DEF中,∵,,BC=EF,∴(AAS),故不符合题意;D.若添加在△ABC和△DEF中,∵,BC=EF,,∴(ASA),故不符合题意;故选A.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、D【解析】试题分析:只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性.解:A,B,C都是利用了三角形稳定性,放缩尺,是利用了四边形不稳定性.故选D.考点:三角形的稳定性.9、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.10、A【分析】根据二次根式的定义即可求出答案.【详解】解:由于3−π<0,∴不是二次根式,故选:A.【点睛】本题考查二次根式,解题的关键是正确理解二次根式的定义,本题属于基础题型.11、D【分析】由线段垂直平分线的性质解得,再由直角三角形中,30°角所对的直角边等于斜边的一半解题即可.【详解】是线段BC的垂直平分线,故选:D.【点睛】本题考查垂直平分线的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.12、D【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由题意,得故选:D.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、5【解析】根据最简二次根式的性质即可进行求解.【详解】依题意得a=2a-5,解得a=5.【点睛】此题主要考查二次根式的性质,解题的关键是熟知同类最简二次根式的被开方数相同.14、【分析】根据题目给出数列的规律即可求出答案.【详解】解:分子可以看出:故第10个数的分子为:分母可以看出:第奇数个分母是其个数的平方加1,例如:12+1=2,32+1=10,52+1=26,
第偶数个分母是其个数的平方减1,例如:22-1=3,42-1=15,62-1=35,故这列数中的第10个数是:故答案为:【点睛】此题主要考查了数字变化规律,正确得出分母的变化规律是解题关键.15、【解析】试题分析:由负数的绝对值等于其相反数可得.考点:绝对值得性质.16、等边【分析】由于AB=AC,∠B=60°,根据有一个角为60°的等腰三角形为等边三角形,判断得出△ABC为等边三角形即可解决问题.【详解】∵AB=AC,∠A=60°,∴△ABC为等边三角形,故答案是:等边.【点睛】本题考查了等边三角形的判定与性质:有一个60°的等腰三角形为等边三角形;三个角都相等,每一个角等于60°.17、120°【分析】由,平分,得∠CBD=∠ABD=30°,进而即可得到答案.【详解】∵,∴∠ABD=,∵平分,∴∠CBD=∠ABD=30°,∴=180°-30°-30°=120°.故答案是:120°.【点睛】本题主要考查平行线的性质与角平分线的定义以及三角形内角和定理,掌握“双平等腰”模型,是解题的关键.18、125°【详解】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.三、解答题(共78分)19、∠1=∠1,理由见解析【分析】由∠A+∠ABC=180°,可以判断AD∥BC,进而得到∠1=∠DBC,由BD⊥CD,EF⊥CD,可得BD∥EF,进而得到∠DBC=∠1,于是得出结论.【详解】解:∠1=∠1,理由:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠1,∴∠1=∠1.【点睛】本题考查平行线的性质和判定,掌握平行线的性质和判定是正确得出结论的前提.20、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+2,故答案为:y=﹣x+2.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.21、(1)5;(2)【分析】(1)通过证明四边形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的长.(2)由折叠的性质可得EF=CE,DC=DF=5,由“HL“可证Rt△ADF≌Rt△MDC,可得AF=CM=3,由勾股定理可求EC的长,即可求解.【详解】解:(1)过点D作DM⊥BC于M.∵AD∥BC,∠B=90°,∴∠A=90°,且∠B=90°,DM⊥BC,∴四边形ABMD是矩形,且AD=AB,∴四边形ABMD是正方形.∴DM=BM=AB=4,CM=3,在Rt△DMC中,CD===5,(2)∵将△CDE沿DE折叠,∴EF=CE,DC=DF=5,且AD=DM,∴Rt△ADF≌Rt△MDC(HL),∴AF=CM=3,∴BF=1,∵EF2=BF2+BE2,∴CE2=1+(7-CE)2,∴CE=∴S△FED=×CE×DM=×=【点睛】本题考查了折叠的性质,正方形的判定,全等三角形的判定和性质,勾股定理,求出DM的长是本题的关键.22、(1)12;(2)当t为9或时,△PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,△PBQ是等边三角形,即可得:PB=BQ,∵在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.∴AB=36cm,可得:PB=36-2t,BQ=t,即36-2t=t,解得:t=12故答案为;12(2)当t为9或时,△PBQ是直角三角形,理由如下:∵∠C=90°,∠A=30°,BC=18cm∴AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∴BP=AB-AP=36-2t,BQ=t∵△PBQ是直角三角形∴BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=所以,当t为9或时,△PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定理解答.23、;【解析】试题分析:本题考查了分式的化简求值,原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.解:原式=+===,当x=0时,原式=.24、且m≠1.【分析】根据(m-1)x2-2mx+m+3=0,方程有两个实数根,从而得出△≥0,即可解出m的范围.【详解】∵方程有两个实数根,∴△≥0;
(-2m)2-4(m-1)(m+3)≥0;
∴;又∵方程是一元二次方程,∴m-1≠0;解得m≠1;∴当且m≠1时方程有两个实数根.【点睛】本题考查了根的判别式以及一元二次方程的定义,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.25、;;【分析】根据分式的运算法则进行化简计算.【详解】原式当时,原式.【点睛】本题考查的是分式的运算,熟练掌握因式分解是解题的关键.26、(1)AC=9;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幕墙系统干挂石材施工方案
- IT项目管理实施方案与最佳实践
- 2024年生活饮用水处理设备项目评价分析报告
- 2024年培训班组织者与学员合同
- 2024年个人信用担保连带责任合同
- 2024年城市照明设施安全评估合同
- 2024年农业滴灌设备租赁合同
- 2024年天然气分销与运输合同
- 2024年国际货物买卖合同及其运输条款
- 2024年个人住房按揭贷款合同
- jgj113-2015建筑玻璃技术规范
- 金刚萨埵《百字明咒》梵文拼音标注
- 意识形态工作责任制落实情况专题汇报
- 《珍爱生命》主题班会
- 四川阿坝汶川县机关事业单位选(考)调工作人员45人55笔试参考题库答案解析版
- 社区矫正人员心得体会
- 2020财务管理学真题及答案
- 人教版高中地理必修一《土壤》PPT
- GB/T 22838.5-2009卷烟和滤棒物理性能的测定第5部分:卷烟吸阻和滤棒压降
- T 1463纤维增强塑料密度和相对密度试验方法
- 引导式销售课件
评论
0/150
提交评论