版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省临高县数学八上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为()A.2a+b B.4a+b C.a+2b D.a+3b2.已知三角形三边长3,4,,则的取值范围是()A. B. C. D.3.如图,∠ACB=900,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm4.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.9,40,41 B.5,12,13 C.0.3,0.4,0.5 D.8,24,255.把分式方程化成整式方程,去分母后正确的是()A. B.C. D.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8 B.11 C.13 D.157.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形 B.正六边形C.正八边形 D.正十二边形8.下列表情中,是轴对称图形的是()A. B. C. D.9.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2015秋•孝感月考)下列各式从左到右的变形是因式分解的是()A.(a+5)(a﹣5)=a2﹣25B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2﹣1=a2+2ab+b2﹣1D.a2﹣4a﹣5=a(a﹣4)﹣5二、填空题(每小题3分,共24分)11.定义:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形,在中,,且,如果是奇异三角形,那么______________.12.的立方根为______.13.如图,已知的三边长分别为6、8、10,分别以它们的三边作为直径向外作三个半圆,则图中阴影部分的面积为_______.14.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.15.若关于的方程的解为正数,则的取值范围是_______.16.若,则=___________.17.如图(1)是长方形纸带,,将纸带沿折叠图(2)形状,则等于________度.18.计算10ab3÷5ab的结果是_____.三、解答题(共66分)19.(10分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.20.(6分)已知,求代数式的值.21.(6分)如图,在中,,是的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作的平分线;(2)作线段的垂直平分线,与交于点,与边交于点,连接;(3)在(1)和(2)的条件下,若,求的度数.22.(8分)关于x的方程有增根,求的值.23.(8分)计算:(1)(2)24.(8分)计算:(1)(2)(3)25.(10分)如图,在中,,,平分,延长至,使,连接.求证:≌26.(10分)如图,,,垂足分别为E、D,CE,BD相交于.(1)若,求证:;(2)若,求证:.
参考答案一、选择题(每小题3分,共30分)1、A【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.2、C【分析】根据三角形三边的关系即可得出结论【详解】解:∵三角形的三边长分别是x,3,4,
∴x的取值范围是1<x<1.
故选:C【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.3、B【详解】解:∵BE⊥CE,AD⊥CE,∴∠BCE=∠CAD,在△ACD和△CBE中,∴△ACD≌△CBE(AAS),∴AD=CE=2.5cm,BE=CD,∵CD=CE−DE=2.5−1.7=0.8cm,∴BE=0.8cm.故选B.4、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、92+402=412,
∴此三角形是直角三角形,不合题意;
B、∵52+122=132,
∴此三角形是直角三角形,不合题意;
C、∵0.32+0.42=0.52,
∴此三角形是直角三角形,不合题意;
D、82+242≠252,
∴此三角形不是直角三角形,符合题意;
故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、B【分析】分式方程两边乘以最简公分母去分母即可得到结果.【详解】分式方程去分母得:,
故选:B.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.6、C【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=7,AC=6代入计算即可.【详解】∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+7=1.故选:C.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7、C【解析】根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【详解】A.正方形的每个内角是,∴能密铺;B.正六边形每个内角是,∴能密铺;C.正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;D.正十二边形每个内角是∴能密铺.故选:C.【点睛】本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.8、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选B.【点睛】考查了轴对称图形,关键是正确找出对称轴的位置.9、C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.10、B【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.考点:因式分解的意义.二、填空题(每小题3分,共24分)11、1::【分析】由△ABC为直角三角形,利用勾股定理列出关系式c2=a2+b2,记作①,再由新定义两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,列出关系式2a2=b2+c2,记作②,或2b2=a2+c2,记作③,联立①②或①③,用一个字母表示出其他字母,即可求出所求的比值.【详解】∵Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,∴根据勾股定理得:c2=a2+b2,记作①,又Rt△ABC是奇异三角形,∴2a2=b2+c2,②,将①代入②得:a2=2b2,即a=b(不合题意,舍去),∴2b2=a2+c2,③,将①代入③得:b2=2a2,即b=a,将b=a代入①得:c2=3a2,即c=a,则a:b:c=1::.故答案为:1::.【点睛】此题考查了新定义的知识,勾股定理.解题的关键是理解题意,抓住数形结合思想的应用.12、【解析】根据立方根的定义求解可得.【详解】解:,的立方根为,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.13、24【分析】根据图形关系可得阴影部分面积为:.【详解】因为已知的三边长分别为6、8、10所以62+82=102由已知可得:图中阴影部分的面积为=24故答案为:24【点睛】考核知识点:直角三角形性质.弄清图形的面积和差关系是关键.14、(2n﹣1,2n﹣1).【解析】解:∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐标(2n-1,2n-1).
故答案为(2n-1,2n-1).15、且【分析】根据分式方程的解法,解出x,再根据题意列出不等式求解即可.【详解】解:∵去分母得:解得:因为方程的解为正数,∴∴,又∵,∴∴,∴m的取值范围为:且故答案为:且.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.16、【解析】由,得x−y=y,即x=y,故=.故答案为.17、1【分析】由题意知∠DEF=∠EFB=20°,再根据三角形的外角的性质即可的解.【详解】∵AD∥BC,∴∠DEF=∠EFB=20°,∴.故答案为1.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.18、1b1.【解析】10ab3÷5ab=10÷5·(a÷a)·(b3÷b)=1b1,故答案为1b1.三、解答题(共66分)19、(1)①见解析;②见解析;(2)2【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.20、【分析】先将x进行化简,然后再代入求值即可.【详解】解:,原式====.【点睛】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键.21、(1)见解析;(2)见解析;(3)55°.【分析】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再分别以这两点为圆心大于两点距离一半为半径作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;(3)通过垂直平分线和角平分线得出,从而求出∠B的度数.【详解】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再以这两点为圆心作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键.22、【分析】根据题意关于x的方程有增根,得到x的值为2或-2,代入求出k的值即可.【详解】解:去分母,得,所以,因为原方程的增根可能是2或-2,当时,=2,此时无解,当时,,解得,所以当时,原方程有增根.【点睛】考查分式方程的增根的知识,学生必须熟练掌握方程的增根的定义,并利用增根定义进行解题求出参数的值是本题解题的关键.23、(1)2xy+2y2;(2)0【分析】(1)利用完全平方公式和平方差公式进行计算;(2)利用多项式除单项式和多项式乘多项式计算法则进行计算.【详解】(1)=x2+2xy+y2-(x2-y2)=2xy+2y2;(2)=-3x2+xy+2y2-(3xy-3x2+2y2-2xy)=-3x2+xy+2y2-xy+3x2-2y2=0【点睛】考查了完全平方公式、平方差公式、多项式除单项式和多项式乘多项式的计算,解题关键是熟记其计算公式和法则.24、(1);(2);(3)【分析】根据分式的混合运算法则进行计算即可,同时注意运算的顺序.【详解】(1),,;(2),;(3),,,.【点睛】本题考查了分式的混合运算:分式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 圣诞节幼儿园创意活动策划5篇
- 2025年植物油及其制品项目规划申请报告模式
- 2025年油烟净化设备项目提案报告
- 2025年气动球阀项目提案报告模稿
- 2025年制药用水设备项目申请报告模范
- 关于高中目标作文集锦五篇
- 物业主管转正报告
- 健康促进倡议书范文汇编6篇
- 文明礼仪演讲稿范文合集八篇
- 毕业大学生实习周报【五篇】
- 2024年-电大《中央银行理论与实务》期末复习资料(作业、蓝本、学习指导(黄本)、试卷)8
- 2024年度物业管理服务合同纠纷调解协议3篇
- 《全国较大事故案例》课件
- 2024-2025学年上学期天津初中地理七年级期末模拟卷1
- 2025版国家开放大学法学本科《国际私法》历年期末纸质考试多项选择题题库
- 甘肃兰州生物制品研究所笔试题库
- 梅花鹿养殖基地建设项目可行性研究报告
- 《面向生鲜食品配额优化的时间序列数据分析与应用》
- 网球俱乐部合伙合同模板
- 职工子女教育资助管理制度
- 小学校门口突发问题应急预案(5篇)
评论
0/150
提交评论