版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
唐山市林西中学2025届数学八上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.2.下列各命题的逆命题中,①三个角对应相等的两个三角形是全等三角形;②全等三角形对应边上的高相等;③全等三角形的周长相等;④两边及其中一边的对角对应相等的两个三角形是全等三角形;假命题是()A.①② B.①③ C.②③ D.①④3.已知,则下列变形正确的是()A. B. C. D.4.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.45.如图,甲、乙、丙、丁四位同学给出了四种表示大长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的有()A.①② B.③④ C.①②③ D.①②③④6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等 B.两个锐角对应相等C.一锐角和斜边对应相等 D.两条直角边对应相等8.已知实数,,,-2,0.020020002……其中无理数出现的个数为()A.2个 B.4个 C.3个 D.5个9.将0.000000517用科学记数法可表示为()A. B. C. D.10.如图,在△ABC中,∠B=90º,AC=10,AD为此三角形的一条角平分线,若BD=3,则三角形ADC的面积为()A.3 B.10 C.12 D.1511.如图,在中,,将在平面内绕点旋转到的位置,使,则旋转角的度数为()A. B. C. D.12.下列运算不正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.将0.000056用科学记数法表示为____________________.14.若mn=2,则m+3nm-n15.如图,,,垂足分别为,,添加一个条件____,可得.16.函数中,自变量的取值范围是__________.17.若是一个完全平方式,则k=___________.18.若(m+1)0=1,则实数m应满足的条件_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点为坐标原点,的顶点、的坐标分别为,,并且满足,.(1)求、两点的坐标.(2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示.20.(8分)如图,三个顶点的坐标分别为,,.(1)画出关于轴对称的图形,并写出三个顶点的坐标;(2)在轴上作出一点,使的值最小,求出该最小值.(保留作图痕迹)21.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?22.(10分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).(1)求直线l₂的解析式;(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.23.(10分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)判断线段AB与OC的位置关系是什么?并说明理由;(3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.24.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.25.(12分)2019年10月,某市高质量通过全国文明城市测评,该成绩的取得得益于领导高度重视(A)、整改措施有效(B)、市民积极参与(C)、市民文明素质(D).某数学兴趣小组随机走访了部分市民,对这四项认可度进行调查(只选填最认可的一项),并将调查结果制作了如下两幅不完整的统计图.(1)请补全D项的条形图;(2)已知B、C两项条形图的高度之比为3:1.①选B、C两项的人数各为多少个?②求α的度数,26.先化简,再求值.,其中.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.2、D【分析】写出各个命题的逆命题,根据全等三角形的判定定理和性质定理判断.【详解】解:①三个角对应相等的两个三角形是全等三角形的逆命题是全等三角形的三个角对应相等,是真命题;②全等三角形对应边上的高相等的逆命题是三边上的高相等的两个三角形全等,是真命题;③全等三角形的周长相等的逆命题是周长相等的两个三角形全等,是假命题;④两边及其中一边的对角对应相等的两个三角形是全等三角形的逆命题是全等三角形两边及其中一边的对角对应相等,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、D【分析】根据不等式的基本性质,逐一判断选项,即可.【详解】∵,∴,∴A错误;∵,∴,∴B错误;∵,∴,∴C错误;∵,∴,∴D正确,故选D.【点睛】本题主要考查不等式的基本性质,特别要注意,不等式两边同乘以一个负数,不等号要改变方向.4、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵x2+mxy+1y2=x2+mxy+(2y)2,∴mxy=±2x×2y,解得:m=±1.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.5、D【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;
②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【详解】①(2a+b)(m+n),本选项正确;
②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点睛】此题考查了整式乘法,灵活计算面积是解本题的关键.6、C【解析】根据:关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;可得.【详解】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答选:C.【点睛】关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;7、B【分析】根据直角三角形全等的判定方法:HL,SAS,ASA,AAS,SSS,做题时要结合已知条件与全等的判定方法逐一验证即可.【详解】A.符合判定HL,故此选项正确,不符合题意;B.全等三角形的判定必须有边的参与,故此选项错误,符合题意;C.符合判定AAS,故此选项正确,不符合题意;D.符合判定SAS,故此选项正确,不符合题意;故选:B.【点睛】本题考查了直角三角形全等的判定定理,熟记直角三角形的判定定理是解题的关键,注意判定全等一定有一组边对应相等的.8、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】实数,,,-2,0.020020002……其中无理数是,,0.020020002……故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π
等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9、A【分析】由题意根据科学记数法的表示方法,进行分析表示即可.【详解】解:0.000000517=.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、D【分析】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.
∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,
∴BD=DE,
∵BD=3,
∴DE=3,
∴S△ADC=•AC•DE=×10×3=15
故选D.【点睛】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.11、D【分析】根据旋转的性质得出,利用全等三角形的性质和平行线的性质得出,即可得出答案.【详解】根据题意可得∴又∴∴∴故答案选择D.【点睛】本题考查的是旋转和全等,难度适中,解题关键是根据图示找出旋转角.12、D【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方的运算,然后选择正确选项.【详解】解:A.,计算正确,故本选项错误;
B.,计算正确,故本选项错误;
C.,原式计算正确,故本选项错误;
D.,计算错误,故本选项正确.
故选:D.【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】根据科学记数法的表示方法解答即可.【详解】解:0.000056=.故答案为:.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、1.【解析】将m=2n代入原式中进行计算即可.【详解】解:由题意可得m=2n,则原式=2n+3n2n-n故答案为:1.【点睛】本题考查了分式的化简求值.15、AB=AD或BC=DC【分析】由题意利用全等直角三角形的判定定理,即一斜边和一直角边相等,两个直角三角形全等进行分析即可.【详解】解:∵,,AC=AC,∴当AB=AD或BC=DC时,有(HL).故答案为:AB=AD或BC=DC.【点睛】本题考查全等三角形的判定,熟练掌握全等直角三角形的判定定理是解题的关键.16、x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17、±1【分析】根据平方项可知是x和4的完全平方式,再根据完全平方公式的乘积二倍项列式求解即可.【详解】解:∵x2+kx+16是一个完全平方式,∴kx=±2×4•x,解得k=±1.故答案为:±1.【点睛】本题考查了完全平方公式,根据平方项确定出这两个数是求解的关键.18、m≠﹣1【分析】根据非零数的零指数幂求解可得.【详解】解:若(m+1)0=1有意义,则m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点睛】本题考查了零指数幂的意义,非零数的零次幂等于1,零的零次幂没有意义.三、解答题(共78分)19、(1)A(0,4),B(-3,0);(2)①当点P在线段BC上时,;②当点P在线段BC延长线上时,【分析】(1)将代数式化简,利用非负性质求出a、b的值即可求出A、B的坐标.(2)先求出C点坐标,过点P作PM⊥y轴,用t表示PM的长度,分别讨论P在BC上和P在BC延长线上的情况.【详解】解:(1)∵ǀa-4|+b2+6b+9=0,∴a-4=0,b2+6b+9=(b+3)2=0,∴a=4,b=-3,∴A(0,4),B(-3,0).(2)由折叠可知C(0,-4),∠BCO=∠BAO=30°,∴OB=3,OC=4,过点P作PM⊥y轴,垂足为M,∴.①当点P在线段BC上时:.②当点P在线段BC延长线上时:.【点睛】本题考查线段动点问题,关键在于结合图形,分类讨论.20、(1)见解析,;(2)见解析,.【分析】(1)先根据轴对称的定义画出点,再顺次连接即可得,根据点坐标关于x轴对称的变化规律即可得点的坐标;(2)根据轴对称的性质、两点之间线段最短可得连接与x轴的交点P即为所求,最小值即为的长,由两点之间的距离公式即可得.【详解】(1)先根据轴对称的定义画出点,再顺次连接即可得,如图所示:点坐标关于x轴对称的变化规律:横坐标不变、纵坐标变为相反数则;(2)由轴对称的性质得:则由两点之间线段最短得:连接与x轴的交点P即为所求,最小值即为的长由两点之间的距离公式得:.【点睛】本题考查了画轴对称图形与轴对称的性质、两点之间线段最短等知识点,熟记轴对称图形与性质是解题关键.21、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.22、(2)直线l₂的解析式为y=2x﹣5;(2)证明见解析;(3)P2(0,﹣9),P2(7,﹣6),P3(,).【分析】(2)解方程得到A(2,3),待定系数法即可得到结论;
(2)根据勾股定理得到OA=5,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到结论;
(3)如图,过C作CM⊥OB于M,求得CM=OD=2,得到C(2,-2),过P2作P2N⊥y轴于N,根据全等三角形的判定和性质定理即可得到结论.【详解】(2)∵直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),∴A(2,3).∵直线交l₂交y轴于点B(0,﹣5),∴y=kx﹣5,把A(2,3)代入得:3=2k﹣5,∴k=2,∴直线l₂的解析式为y=2x﹣5;(2)∵OA5,∴OA=OB,∴∠OAB=∠OBA.∵将△OAB沿直线l₂翻折得到△CAB,∴∠OAB=∠CAB,∴∠OBA=∠CAB,∴AC∥OB;(3)如图,过C作CM⊥OB于M,则CM=OD=2.∵BC=OB=5,∴BM=3,∴OB=2,∴C(2,﹣2),过P2作P2N⊥y轴于N.∵△BCP是等腰直角三角形,∴∠CBP2=90°,∴∠MCB=∠NBP2.∵BC=BP2,∴△BCM≌△P2BN(AAS),∴BN=CM=2,∴P2(0,﹣9);同理可得:P2(7,﹣6),P3(,).【点睛】本题考查了一次函数的综合题,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的求得P点的坐标是解题的关键.23、(1)与相等的角是;(2),证明详见解析;(3)与的度数比不随着位置的变化而变化,【分析】(1)根据两直线平行,同旁内角互补可得、,再根据邻补角的定义求出即可得解;(2)根据两直线的同旁内角互补,两直线平行,即可证明;(3)根据两直线平行,内错角相等可得,再根据角平分线的定义可得,从而得到比值不变.【详解】(1)∴又与相等的角是;(2)理由是:即(3)与的度数比不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能停车系统车库交易合同2篇
- 二零二五年度家政服务与家庭旅游策划合同3篇
- 二零二五年度叉车维修保养与维修设备租赁合同2篇
- 2025年度综合体物业房使用及公共设施维护协议3篇
- 二零二五年度大棚养殖废弃物资源化利用合作协议2篇
- 二零二五年度文化旅游项目借款及旅游资源担保服务协议3篇
- 二零二五年度保障性住房置换合同范本
- 二零二五年度ISO9001质量管理体系认证咨询与实施合同3篇
- 二零二五年度加油站油品供应与信息化建设合同3篇
- 船舶管系课程设计
- MDR医疗器械法规考核试题及答案
- 河南省郑州高新技术产业开发区2023-2024学年三年级上学期1月期末科学试题
- 女装行业退货率分析
- 领导沟通的艺术
- 纯视觉方案算法
- 道士述职报告
- 绿色贷款培训课件
- 2024年七年级语文上学期期末作文题目及范文汇编
- 云南省昆明市五华区2023-2024学年九年级上学期期末英语试卷+
- 2023年生产运营副总经理年度总结及下一年计划
- 2023年中考语文标点符号(顿号)练习(含答案)
评论
0/150
提交评论