2025届河南聚焦八年级数学第一学期期末监测试题含解析_第1页
2025届河南聚焦八年级数学第一学期期末监测试题含解析_第2页
2025届河南聚焦八年级数学第一学期期末监测试题含解析_第3页
2025届河南聚焦八年级数学第一学期期末监测试题含解析_第4页
2025届河南聚焦八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南聚焦八年级数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列一些标志中,可以看作是轴对称图形的是()A. B. C. D.2.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50° B.100° C.70° D.80°3.下列式子是分式的是()A. B. C. D.4.下列交通标志中,是轴对称图形的是()A. B. C. D.5.下列运算正确的是()A. B. C. D.6.有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个7.下列命题是真命题的是()A.在一个三角形中,至多有两个内角是钝角B.三角形的两边之和小于第三边C.在一个三角形中,至多有两个内角是锐角D.在同一平面内,垂直于同一直线的两直线平行8.如图,中,平分,平分,经过点,且,若,的周长等于12,则的长为()A.7 B.6 C.5 D.49.下列四个图形中,是轴对称图形的有()A.4个 B.3个 C.2个 D.1个10.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20二、填空题(每小题3分,共24分)11.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;12.某住宅小区有一块草坪如图所示,已知AB=6米,BC=8米,CD=24米,DA=26米,且AB⊥BC,则这块草坪的面积是________平方米.13.计算:_________.14.已知点A(x,2),B(﹣3,y),若A,B关于x轴对称,则x+y等于_____.15.计算的结果等于_____________.16.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.17.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。18.若关于x,y的二元一次方程组的解也是二元一次方程x+y=36的解,则k的值为_____.三、解答题(共66分)19.(10分)某业主贷款88000元购进一台机器,生产某种产品,已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%,若每个月能生产、销售8000个产品,问至少几个月后能赚回这台机器贷款?(用列不等式的方法解决)20.(6分)勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:1234…………(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现,,之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”)吗?(4)你能用以上结论解决下题吗?21.(6分)广州市花都区某校八年级有180名同学参加地震应急演练,对比发现:经专家指导后,平均每秒撤离的人数是专家指导前的3倍,这180名同学全部撤离的时间比专家指导前快2分钟.求专家指导前平均每秒撤离的人数.22.(8分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.23.(8分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是;(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.24.(8分)甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:(1)甲车的速度是千米/时,乙车的速度是千米/时;(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.25.(10分)(1)如图①,OP是∠MON的平分线,点A为OP上一点,请你作一个∠BAC,B、C分别在OM、ON上,且使AO平分∠BAC(保留作图痕迹);(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,△ABC的平分线AD,CE相交于点F,请你判断FE与FD之间的数量关系(可类比(1)中的方法);(3)如图③,在△ABC中,如果∠ACB≠90°,而(2)中的其他条件不变,请问(2)中所得的结论是否仍然成立?若成立,请证明,若不成立,说明理由.26.(10分)如图,已知在ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME、BN;(1)根据题意,补全图形;(2)ME与BN有何数量关系,判断并说明理由;(3)点M在何处时BM+BN取得最小值?请确定此时点M的位置,并求出此时BM+BN的最小值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的定义逐项分析判断即可.【详解】解:A、C、D不符合轴对称图形的定义,故不是轴对称图形;B符合轴对称图形的定义,故B是轴对称图形.故选B.【点睛】本题考查了轴对称图形的识别,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.2、B【分析】三角形一个外角等于与它不相邻的两个内角的和,根据外角的性质即可得到结论.【详解】解:∵∠AEB=∠A+∠C=20°+50°=70°,∴∠ADB=∠AEB+∠B=70°+30°=100°.故选B.【点睛】本题主要考查了三角形的外角的性质,熟练掌握三角形外角的性质是解题的关键.3、B【解析】解:A、C、D是整式,B是分式.故选B.4、D【分析】根据轴对称的概念:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就是轴对称图形即可得出答案.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考察了轴对称图形,掌握轴对称图形的概念是解题的关键.5、B【分析】根据整式的混合运算法则即可求解.【详解】A.,故错误;B.,正确;C.,故错误;D.,故错误;故选B.【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.6、D【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.7、D【分析】正确的命题是真命题,根据定义依次判断即可.【详解】在一个三角形中,至多有一个内角是钝角,故A不是真命题;三角形的两边之和大于第三边,故B不是真命题;在一个三角形中,至多有三个内角是锐角,故C不是真命题;在同一平面内,垂直于同一直线的两直线平行,故D是真命题,故选:D.【点睛】此题考查真命题的定义,正确理解真命题的定义及会判断事情的正确与否是解题的关键.8、A【分析】根据角平分线及得到BM=OM,CN=ON,得到三角形AMN的周长=AB+AC,再利用AB=5即可求出AC的长.【详解】∵平分,∴∠MBO=∠OBC,∵,∴∠OBC=∠MOB,∴∠MBO=∠MOB,∴BM=OM,同理CN=ON,∴的周长=AM+AN+MN=AM+AN+OM+ON=AB+AC=12,∵AB=5,∴AC=7,故选:A.【点睛】此题考查平行线的性质:两直线平行内错角相等,角平分线的定义,三角形周长的推导是解题的关键.9、B【分析】根据轴对称图形的定义依次进行判断即可.【详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【点睛】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.10、C【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=1.故选C【点睛】本题考查了等腰三角形的性质及三角形三边关系,分情况分析师解题的关键.二、填空题(每小题3分,共24分)11、50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.12、【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ACD是直角三角形,分别计算两个直角三角形的面积,再求和即所求的面积.【详解】解:连接AC,∵在△ABC中,AB⊥BC即∠ABC=90°,AB=6,BC=8,∴,,又∵CD=24,DA=26,∴,∴,∴△ACD是直角三角形,且∠ACD=90°∴∴故答案为:144.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,同时考查了直角三角形的面积公式.作辅助线构造直角三角形是解题的关键.13、【分析】根据整式的除法法则计算可得解.【详解】故答案是:.14、﹣1.【解析】让横坐标不变,纵坐标互为相反数列式求得x,y的值,代入所给代数式求值即可.【详解】∵A,B关于x轴对称,∴x=﹣3,y=﹣2,∴x+y=﹣1.故答案为:﹣1.【点睛】本题考查了关于x轴对称的点的特点及代数式求值问题;用到的知识点为:两点关于x轴对称,纵坐标互为相反数,横坐标不变.15、1【解析】根据平方差公式计算即可.【详解】解:原式=3﹣1=1.故答案为1.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.16、如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.17、0<a<1【解析】已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【详解】∵点P(a-1,a)是第二象限内的点,∴a-1<0且a>0,解得:0<a<1.故答案为:0<a<1.【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).18、1【分析】先用含k的式子表示x、y,根据方程组的解也是二元一次方程x+y=36的解,即可求得k的值.【详解】解:解方程组得,,因为方程组的解也是二元一次方程x+y=36的解,所以3k=36,解得k=1.故答案为1.【点睛】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.三、解答题(共66分)19、1个月【分析】设需要x个月后能赚回这台机器贷款,利用每个商品利润乘以销售8000个,再乘月份,比88000大,解之即可.【详解】解:设需要x个月后能赚回这台机器贷款,依题意,得:(8﹣8×10%﹣1)×8000x≥88000,解得:x≥1.答:至少1个月后能赚回这台机器贷款.【点睛】本题考查列不等式解决贷款问题,关键是掌握求出每个产品的利润,月销售额,月数之间的关系.20、(1),,;(2);(3)成立;(4)0【分析】(1)根据表中的规律即可得出;(2)由前几组数可得出,,之间的关系;(3)另n=2k代入,,计算即可得出;(4)根据(2)中的关系式,将进行合理的拆分,使之符合(2)中的规律即可计算得出.【详解】解:(1)由表中信息可得,,,故答案为,,.(2)由于,,∵即.(3)令n=2k,则,,∵,由于即,∴对于偶数,这个关系成立(4)∵由(2)中结论可知∴【点睛】本题考查了勾股定理中的规律探究问题,解题的关键是通过表格找出规律,并应用规律.21、1人【分析】设专家指导前平均每秒撤离的人数为x人,根据题意列出分式方程,解分式方程并检验即可.【详解】设专家指导前平均每秒撤离的人数为x人,根据题意有解得将检验,是原分式方程的解答:专家指导前平均每秒撤离的人数为1人【点睛】本题主要考查分式方程的应用,读懂题意,列出分式方程是解题的关键.22、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【点睛】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个三角形全等,可得到对应边相等.23、(1)2,3,-1;(2);(3)(4)或【解析】试题分析:(1)对于直线,令求出的值,确定出A的坐标,把B坐标代入中求出b的值,再将D坐标代入求出n的值,进而将D坐标代入求出的值即可;由两个一次函数解析式,结合图象确定出的范围;过D作垂直于轴,四边形的面积等于梯形面积减去三角形面积,求出即可;在轴上存在点P,使得以点P、C、D为顶点的三角形是直角三角形,理由:分两种情况考虑:;‚,分别求出P点坐标即可.试题解析:(1)对于直线,令得到,即A(0,1),把B(0,-1)代入中,得:,把D(1,n)代入得:,即D(1,2),把D坐标代入中得:,即,故答案为2,3,-1;一次函数与交于点D(1,2),由图象得:函数的函数值大于函数的函数值时的取值范围是;故答案为;过D作垂直于轴,如图1所示,则(4)如图2,在轴上存在点P,使得以点P、C、D为顶点的三角形是直角三角形,理由:分两种情况考虑:当时,可得斜率为3,斜率为,解析式为令即‚当时,由D横坐标为1,得到P点横坐标为1,在轴上,考点:一次函数综合题.24、(1)105,60;(2)y=;(3)时,时或时.【分析】(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.【详解】(1)由图可得,甲车的速度为:(210×2)÷4=420÷4=105千米/时,乙车的速度为:60千米/时,故答案为105,60;(2)由图可知,点M的坐标为(2,210),当0≤x≤2时,设y=k1x,∵M(2,210)在该函数图象上,2k1=210,解得,k1=105,∴y=105x(0≤x≤2);当2<x≤4时,设y=k2x+b,∵M(2,210)和点N(4,0)在该函数图象上,∴,得,∴y=﹣105x+420(2<x≤4),综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;(3)设甲车出发a小时时两车相距90千米,当甲从A地到C地时,105a+60(a+1)+90=420,解得,a=,当甲从C地返回A地时,(210﹣60×3)+(105﹣60)×(a﹣2)=90,解得,a=,当甲到达A地后,420﹣60(a+1)=90,解得,a=,答:甲车出发时,时或时,两车相距90千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25、(1)详见解析;(2)FE=FD,证明详见解析;(3)成立,证明详见解析.【分析】(1)在射线OM,ON上分别截取OB=OC,连接AB,AC,则AO平分∠BAC;(2)过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,根据角平分线上的点到角的两边的距离相等可得FG=FH=FK,根据四边形的内角和定理求出∠GFH=120°,再根据三角形的内角和定理求出∠AFC=120°,根据对顶角相等求出∠EFD=120°,然后求出∠EFG=∠DFH,再利用“角角边”证明△EFG和△DFH全等,根据全等三角形对应边相等可得FE=FD;(3)过点F分别作FG⊥AB于点G,FH⊥BC于点H,首先证明∠GEF=∠HDF,再证明△EGF≌△DHF可得FE=FD.【详解】解:(1)如图①所示,∠BAC即为所求;(2)如图②,过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FK,在四边形BGFH中,∠GFH=360°﹣60°﹣90°×2=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∠B=60°,∴∠FAC+∠FCA=(180°﹣60°)=60°,在△AFC中,∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣60°=120°,∴∠EFD=∠AFC=120°,∴∠EFD=∠GFH∴∠EFG=∠DFH,在△EFG和△DFH中,,∴△EFG≌△DFH(ASA),∴FE=FD;(3)成立,理由:如图c,过点F分别作FG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论