内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题含解析_第1页
内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题含解析_第2页
内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题含解析_第3页
内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题含解析_第4页
内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼伦贝尔市莫旗2025届八年级数学第一学期期末检测模拟试题末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2) B.(1,2) C.(1,﹣2) D.(﹣1,﹣2)2.下列命题为假命题的是()A.三条边分别对应相等的两个三角形全等 B.三角形的一个外角大于与它相邻的内角C.角平分线上的点到角两边的距离相等 D.有一个角是的等腰三角形是等边三角形3.若ax=3,ay=2,则a2x+y等于()A.18 B.8 C.7 D.64.设是三角形的三边长,且满足,关于此三角形的形状有以下判断:①是直角三角形;②是等边三角形;③是锐角三角形;④是钝角三角形,其中正确的说法的个数有()A.1个 B.2个 C.3个 D.4个5.已知多项式可以写成两个因式的积,又已知其中一个因式为,那么另一个因式为()A. B. C. D.6.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11 B.12 C.13 D.11或137.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容:如图,已知,求的度数.解:在和中,,∴,∴(全等三角形的相等)∵,∴,∴则回答正确的是()A.代表对应边 B.*代表110° C.代表 D.代表8.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)9.如图,直线,点、在上,点在上,若、,则的大小为()A. B. C. D.10.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个 B.4个 C.5个 D.无数个11.一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5 B.10 C.25 D.±2512.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-6二、填空题(每题4分,共24分)13.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.14.如图,在中,,,是中点,则点关于点的对称点的坐标是______.15.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.16.一件工作,甲独做需小时完成,乙独做需小时完成,则甲、乙两人合作需的小时数是______.17.如图,,则的长度为__________.18.点(2,﹣1)所在的象限是第____象限.三、解答题(共78分)19.(8分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.20.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点,的坐标分别为,.(1)请在图中画出平面直角坐标系;(2)请画出关于轴对称的;(3)线段的长为_______.21.(8分)如图,AB=AC,AD=AE,∠BAD=∠CAE,求证:BE=CD.22.(10分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.23.(10分)(1)请用两种不同的方法列代数式表示图中阴影部分的面积.方法①_________________;方法②_________________;(2)根据(1)写出一个等式________________;(3)若,.①求的值。②,的值.24.(10分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.25.(12分)甲、乙两校参加学生英语口语比赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、1分、9分、10分(满分为10分),乙校平均分是1.3分,乙校的中位数是1分.依据统计数据绘制了如下尚不完整的甲校成绩统计表和乙校成绩统计图;甲校成绩统计表分数7分1分9分10分人数110■1(1)请你将乙校成绩统计图直接补充完整;(2)请直接写出甲校的平均分是,甲校的中位数是,甲校的众数是,从平均分和中位数的角度分析校成绩较好(填“甲”或“乙”).26.解分式方程:(1);(2)

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点A(﹣1,2)关于x轴对称的点B的坐标是(﹣1,﹣2).故选D.2、B【分析】根据全等三角形的判定、三角形外角的性质、角平分线上的性质以及等边三角形的判定得出答案即可.【详解】解:A、三条边分别对应相等的两个三角形全等,此选项是真命题,故此选项不符合题意;

B、三角形的一个外角大于与它不相邻的任意一个内角,根据三角形外角性质得出,此选项是假命题,故此选项符合题意;

C、角平分线上的点到角两边的距离相等,此选项是真命题,故此选项不符合题意;

D、有一个角是的等腰三角形是等边三角形,故此选项是真命题,故此选项不符合题意;

故选:B.【点睛】此题主要考查了命题与定理,正确把握三角形外角的性质、角平分线上的性质、等边三角形的判定以及全等三角形的性质是解题关键.3、A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【详解】解:∵ax=3,ay=2,

∴a2x+y=(ax)2×ay=32×2=1.

故选:A.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.4、B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.【详解】∵,

∴,

即,

∴,

∴此三角形为等边三角形,同时也是锐角三角形.

故选:B.【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.5、B【分析】设出另一个因式是(2x+a),然后根据多项式乘多项式的法则得出它的积,然后根据对应项的系数相等即可得出答案.【详解】解:设多项式,另一个因式为,

∵多项式有一个因式,

则,

∴3a+10=13,5a+4=9,2a=2,

∴a=1,

∴另一个因式为故选:B【点睛】此题主要考查了因式分解的意义,正确假设出另一个因式是解题关键.6、D【分析】根据等腰三角形的性质分两种情况讨论可得.【详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【点睛】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.7、B【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:A、代表对应角,故A错误,B、,*代表110°,故B正确,C、代表,故C错误,D、代表,故D错误,故答案为:B.【点睛】本题考查了全等三角形的判定及性质,解题的关键是熟练运用全等三角形的判定及性质.8、D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.9、B【分析】根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.【详解】解:∵AB=AC,

∴∠ACB=∠ABC=70°,

∵直线l1∥l2,

∴∠1+∠ACB+∠ABC=180°,

∴∠1=180°-∠ABC-∠ACB=180°-70°-70°=40°.

故选:B.【点睛】此题考查了平行线的性质,等腰三角形的性质.解题的关键是注意掌握两直线平行,同旁内角互补与等边对等角定理的应用.10、C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.11、C【解析】一个正数的平方根为2x+1和x−7,∴2x+1+x−7=0x=2,2x+1=5(2x+1)2=52=25,故选C.12、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000075=7.5×10-5.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每题4分,共24分)13、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.14、().【分析】过点A作AD⊥OB于D,然后求出AD、OD的长,从而得到点A的坐标,再根据中点坐标公式,求出点C的坐标,然后利用中点坐标公式求出点O关于点C的对称点坐标,即可.【详解】如图,过点A作AD⊥OB于D,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷=,∴点A(,),B(3,0),∵C是AB中点,∴点C的坐标为(),∴点O关于点C的对称点的坐标是:()故答案为:().【点睛】本题主要考查图形与坐标,掌握等腰直角三角形的三边之比以及线段中点坐标公式,是解题的关键.15、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.16、【分析】设总工作量为1,根据甲独做a小时完成,乙独做b小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【详解】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:∴甲、乙合做全部工作需:故填:.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,根据关键描述语,找到所求的量的等量关系,当总工作量未知时,可设总工作量为1.17、2cm【分析】根据全等三角形的对应边都相等,得到、的长,即可求出的长.【详解】解:故答案为:2cm.【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.18、四.【分析】根据点在四个象限内的坐标特点解答即可.【详解】∵点的横坐标大于0,纵坐标小于0∴点(2,﹣1)所在的象限是第四象限.故答案为:四.【点睛】本题主要考查了四个象限的点的坐标的特征,熟练掌握,即可解题.三、解答题(共78分)19、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.20、(1)见解析;(2)见解析;(3).【分析】(1)利用点B、C的坐标画出直角坐标系;(2)利用关于y轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可得到△A′B′C′(3)根据勾股定理即可求出线段的长.【详解】(1)如图所示,(2)如图,△A′B′C′为所作;(3)=故答案为:.【点睛】本题考查了作图−轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.21、证明见解析【解析】先根据角的和差求出,再根据三角形全等的判定定理与性质即可得证.【详解】,即在与中,.【点睛】本题考查了三角形全等的判定定理与性质,熟记判定定理与性质是解题关键.22、出发或小时时,行进中的两车相距8千米.【分析】根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.【详解】解:由图可知,小聪及父亲的速度为:千米/时,小明的父亲速度为:千米/时,设小明的父亲出发小时两车相距8千米,则小聪及父亲出发的时间为小时.根据题意得:或,解得或,所以,出发或小时时,行进中的两车相距8千米.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,从图中准确获取信息求出两人的速度是解题的关键,易错点在于要分两种情况求解.23、(1)方法①,②;(2);(3)①②或.【分析】(1)方法①根据阴影部分的面积=大正方形的面积-长方形的面积×4,即可解得;方法②根据阴影部分的面积=小正方形的边长×边长,即可解答;(2)根据(1)即可写出等式;(3)根据②的等式即可求出x-y的值.【详解】解:(1)方法①:阴影部分的面积=(m+n)2﹣4mn;方法②:阴影部分的面积=(m﹣n)2;(2)由(1)得(m+n)2﹣4mn=(m﹣n)2,(3)①由(2)可得:(x﹣y)2

=(x+y)2﹣4xy,∵,,∴(x﹣y)2=36﹣11=25,②∵(x﹣y)2=25,∴x﹣y=±5.∵,∴或,解之得或.【点睛】本题考查了完全平方公式的应用,代数式求值,平方根.能熟记完全平方公式是解此题的关键,难度不大.24、(1)1;(2);.【解析】试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,解得:x=1,即AB=1.(2)①如图2,过点A作AG⊥PB于点G,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∵AP=AB,∴PG=BG=PB=,在Rt△AGP中,AG=,∵AG⊥PB,MH⊥PB,∴MH∥AG,∵M是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论