版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年黑龙江省讷河市实验学校数学九上开学统考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为()A. B. C. D.2、(4分)函数的自变量x的取值范围是()A. B.C.且 D.或3、(4分)若关于的分式方程无解,则的值为()A.2 B. C.3 D.4、(4分)设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2B.k-1C.kD.k+15、(4分)下列四组线段中,不能作为直角三角形三条边的是()A.8,15,17 B.1,2, C.7,23,25 D.1.5,2,2.56、(4分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.7、(4分)若,则的值是()A. B. C. D.8、(4分)在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)10、(4分)线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.11、(4分)已知,正比例函数经过点(-1,2),该函数解析式为________________.12、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.13、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.三、解答题(本大题共5个小题,共48分)14、(12分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:(1)填空:a=,b=,c=.(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.15、(8分)如图,矩形ABCD中,AB4,BC10,E在AD上,连接BE,CE,过点A作AG//CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE2,求证:四边形EFGH是矩形.16、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标(1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.(3)画出△ABC绕点C旋转180°后得到的△A1B1C1.17、(10分)分解因式:.18、(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE=.②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为.20、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.21、(4分)如图,已知中,,平分,点是的中点,若,则的长为________。22、(4分)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.23、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.25、(10分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.26、(12分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.
故选:C.此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.2、A【解析】
要使函数有意义,则所以,故选A.考点:函数自变量的取值范围.3、A【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于1.【详解】解:方程去分母得:x-5=-m解得:x=5-m,当x=3时,分母为1,方程无解,所以5-m=3,即m=2时方程无解。故选:A本题考查了分式方程无解的条件,是需要识记的内容.4、C【解析】试题解析:原式可以化为:y=(k−2)x+2,∵0<k<2,∴k−2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k−2)+2=k.故选C.5、C【解析】
根据勾股定理的逆定理逐一判断即可.【详解】A.因为82+152=172,故以8,15,17为三边长能构成直角三角形,故本选项不符合题意;B.12+22=()2,故以1,2,为三边长能构成直角三角形,故本选项不符合题意;C.72+232≠252,故以7,23,25为三边长不能构成直角三角形,故本选项符合题意;D.,故以为三边长能构成直角三角形,故本选项不符合题意.故选C.此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.6、B【解析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:.故选B.考点:概率公式.7、B【解析】
解:故选:B.本题考查同分母分式的加法运算.8、D【解析】
根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.二、填空题(本大题共5个小题,每小题4分,共20分)9、=【解析】
利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S1.故答案为:=.本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.10、(0,0)、(0,)、(4,0)【解析】
由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.【详解】如图:①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,所以P的坐标为:(0,0);②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,即:12=2•OP′,解得OP′=;故P点的坐标是(0,);同理当BO2=AO•OP″时三角形PAB也是直角三角形,即22=1OP″解得OP″=4,故P点的坐标是(4,0).故答案为(0,0)、(0,)、(4,0)主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.11、y=-2x【解析】
把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式.【详解】设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.12、2【解析】
首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴AB=2CD=17,∴BC===2,故答案为:2.此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.13、y=2x2+1.【解析】
先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.【详解】抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.故答案是:y=2x2+1.本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(,9);其意义为当x<时是方案调价前合算,当x>时方案调价后合算.【解析】
(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=,y=9;所以,函数y1与y2的图象存在交点(,9);其意义为当x<时是方案调价前合算,当x>时方案调价后合算.本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.15、证明见解析.【解析】
根据四边形ABCD是矩形以及AG//CE,得到四边形AECG是平行四边形,从而得到四边形BEDG是平行四边形,即可得到四边形EFGH是平行四边形,再根据勾股定理求出BE,CE长,由勾股定理的逆定理得到△BEC是直角三角形,即可得正.【详解】∵四边形ABCD是矩形,∴AD//BC,AD=BC=10,∵AG//CE,∴四边形AECG是平行四边形,∴AE=CG=2,∴ED=BG=8,∴四边形BEDG是平行四边形,∴BE//DG,∴四边形EFGH是平行四边形,∵∠BAE=90°,∠ADC=90°,∴BE=AB2∴BE∴△BEC是直角三角形,∴∠CEF=90°,∴四边形EFGH是矩形.本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.16、(1)A(﹣1,1),B(﹣3,1);(1)P1(a+4,b+1);(3)见解析.【解析】
(1)根据直角坐标系写出A、B两点的坐标即可.(1)首先确定点A的平移路径,再将B和C按照点A的平移路线平移,再将平移点连接起来即可.(3)首先根据点C将A点和B点旋转,再将旋转后的点连接起来即可.【详解】解:(1)根据图形得:A(﹣1,1),B(﹣3,1);(1)如图所示:△A1B1C1,即为所求;根据题意得:P1(a+4,b+1);(3)如图所示:△A1B1C1,即为所求.本题主要考查直角坐标系中图形的平移和旋转,关键在于根据点的平移和旋转来确定图形的平移和旋转.17、.
【解析】
先提公因式(x-y),再运用平方差公式分解因式.【详解】,,,.本题考核知识点:因式分解.解题关键点:熟练掌握因式分解基本方法.18、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.【解析】
(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.【详解】(1)证明:如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)证明:如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB﹣BE=12﹣4=8,设DF=x,则AD=12﹣x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,解得:x=2.则DE=4+2=4.故答案是:4;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.在直角△BCF中,BC2=BF2+FC2,则(2+x)2=42+x2,解得:x=4.则BC=2+4=5,则△ABC的面积是:AD•BC=×2×5=1.本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.一、填空题(本大题共5个小题,每小题4分,共20分)19、y=﹣1x【解析】试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:∵正比例函数y=kx的图象经过点A(﹣1,1),∴﹣k=1,即k=﹣1.∴正比例函数的解析式为y=﹣1x.20、2【解析】
根据题意先确定x的值,再根据中位数的定义求解.【详解】解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为2,根据题意得:解得x=2,将这组数据从小到大的顺序排列1,2,2,2,12,处于中间位置的是2,所以这组数据的中位数是2.故答案为2.本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.21、1【解析】
根据等腰三角形的性质可得D是BC的中点,再根据三角形中位线定理即可求解.【详解】解:∵AB=AC,AD平分∠BAC,
∴CD=BD,
∵E是AB的中点,
∴DE∥AC,DE=,
∵AC=6,
∴DE=1.
故答案为:1.此题主要考查了等腰三角形的性质,以及三角形中位线定理,关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的知识点.22、两;2;2;22【解析】
根据立方和立方根的定义逐一求解可得.【详解】已知,且为整数,,一定是两位数,的个位数字是,的个位数字一定是,划去后面的三位得,,的十位数字一定是,.故答案为:两、、、.本题主要考查立方根,解题的关键是掌握立方与立方根的定义.23、(5,1)【解析】【分析】根据点坐标平移特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全检查服务合同范本
- 冀少版八年级生物上册第三单元第三节无机盐与植物的生长课件
- 学前教育进入“有专门法可依”新阶段
- 部编本二年级上册语文第四至七单元(内容含课文口语交际及语文园地)全部教案
- 七年级下册古诗文预习《爱莲说》-2022-2023学年七年级语文古诗文寒假复习预习课
- 消防安全群防群治实施细则
- 人教版新课标小学数学四年级下册教案
- 医疗行业专业劳务派遣方案
- 石油勘探设备校正操作规程
- 电力工程投标诚信承诺书模板
- 地质勘探中的安全生产考核试卷
- 期中(1-4单元)(试题)-2024-2025学年六年级语文上册统编版
- 【八上沪科版数学】安徽省合肥市蜀山区名校2023-2024学年八年级上学期期中模拟数学试卷
- GB/T 22838.5-2024卷烟和滤棒物理性能的测定第5部分:卷烟吸阻和滤棒压降
- 评标专家库系统系统总体建设方案
- 学校学生食堂“三防”制度
- 人教版美术八年级上册 第一单元 第1课《造型的表现力》 教案
- 数学-湖湘名校教育联合体2024年下学期高二10月大联考试题和答案
- 2024年农村合作社管理制度范本(二篇)
- 2024年上海市教育委员会科技发展中心拟聘人员历年高频难、易错点500题模拟试题附带答案详解
- 2024-2030年中国共享汽车行业市场深度调研及发展趋势与投资前景研究报告
评论
0/150
提交评论