2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省邯郸市八年级数学第一学期期末学业质量监测模拟试题拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处2.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A. B. C. D.3.如图,已知,,,,则下列结论错误的是()A. B. C. D.4.给出下列实数:、、、、、、(每相邻两个1之间依次多一个,其中无理数有A.2个 B.3个 C.4个 D.5个5.若是完全平方式,与的乘积中不含的一次项,则的值为A.-4 B.16 C.4或16 D.-4或-166.如果一个数的平方根与立方根相同,那么这个数是().A.0 B. C.0和1 D.0或7.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形8.如果m﹥n,那么下列结论错误的是()A.m+2﹥n+2 B.m-2﹥n-2 C.2m﹥2n D.-2m﹥-2n9.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.化简得.12.计算=_____.13.如图,已知,点A在边OX上,,过点A作于点C,以AC为一边在内作等边三角形ABC,点P是围成的区域(包括各边)内的一点,过点P作交OX于点D,作交OY于点E,则的最大值与最小值的积是______.14.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.15.如图于,,则的长度为____________16.如图,△ABC是等边三角形,D是BC延长线上一点,DE⊥AB于点E,EF⊥BC于点F.若CD=3AE,CF=6,则AC的长为_____.17.若a2+b2=19,a+b=5,则ab=_____.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.三、解答题(共66分)19.(10分)因式分解(1);(2).20.(6分)如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?21.(6分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.22.(8分)解方程与不等式组(1)解方程:(2)解不等式组23.(8分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.24.(8分)如图所示,三点在同一条直线上,和为等边三角形,连接.请在图中找出与全等的三角形,并说明理由.25.(10分)如图,已知与互为补角,且,(1)求证:;(2)若,平分,求证:.26.(10分)两个一次函数l1、l2的图象如图:(1)分别求出l1、l2两条直线的函数关系式;(2)求出两直线与y轴围成的△ABP的面积;(3)观察图象:请直接写出当x满足什么条件时,l1的图象在l2的下方.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.2、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.3、B【分析】先根据三角形全等的判定定理证得,再根据三角形全等的性质、等腰三角形的性质可判断A、C选项,又由等腰三角形的性质、三角形的内角和定理可判断出D选项,从而可得出答案.【详解】,即在和中,,则A选项正确(等边对等角),则C选项正确,即又,即,则D选项正确虽然,但不能推出,则B选项错误故选:B.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出是解题关键.4、B【分析】根据无理数是无限不循环小数,可得答案.【详解】解:=−5,=1.2,

实数:、、、、、、(每相邻两个1之间依次多一个0),其中无理数有、、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.

故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.5、C【解析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【详解】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4,n=﹣2,此时原式=16;m=2,n=﹣2,此时原式=4,则原式=4或16,故选C.【点睛】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.6、A【分析】根据平方根、立方根的定义依次分析各选项即可判断.【详解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与它的立方根相同的数是0,故选A.【点睛】本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.7、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°

故这个三角形是直角三角形.

故选:C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.8、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A.两边都加2,不等号的方向不变,故A正确;B.两边都减2,不等号的方向不变,故B正确;C.两边都乘以2,不等号的方向不变,故C正确;D.两边都乘以-2,不等号的方向改变,故D错误;故选D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则9、C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.

显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.10、B【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.二、填空题(每小题3分,共24分)11、.【解析】试题分析:原式=.考点:分式的化简.12、10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.13、1【分析】结合题意,得四边形ODPE是平行四边形,从而得到;结合点P是围成的区域(包括各边)内的一点,推导得当点P在AC上时,取最小值;当点P与点B重合时,取最大值;再分别根据两种情况,结合平行四边形、等边三角形、勾股定理的性质计算,即可完成求解.【详解】过点P做交于点H∵∴∵∴∴∵,∴四边形ODPE是平行四边形∴∴∴∵点P是围成的区域(包括各边)内的一点结合图形,得:当点P在AC上时,取最小值;当点P与点B重合时,取最大值;当点P在AC上时,∵,∴∴最小值;当点P与点B重合时,如下图,AC和BD相交于点G∴∵,,∴,,∵等边三角形ABC∴,∴∴∴∴GB是等边三角形ABC的角平分线∴又∵,即∴是的中位线∴∴,∴∵∴∴∴∴最大值∴最大值与最小值的积故答案为:1.【点睛】本题考查了平行四边形、勾股定理、直角三角形、等边三角形、等边三角形中位线、平行线的知识;解题的关键是熟练掌握平行线、平行四边形、等边三角形、勾股定理的性质,从而完成求解.14、47°【分析】首先过点C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用两直线平行,同位角相等与余角的性质,即可求得∠β的度数.【详解】解:如图,过点C作CH∥DE交AB于H根据题意得:∠ACB=90°,DE∥FG,∴CH∥DE∥FG,∴∠BCH=∠α=43°,∴∠HCA=90°-∠BCH=47°,∴∠β=∠HCA=47°.【点睛】本题考查平行线的性质,难度不大,解题的关键是准确作出辅助线,掌握两直线平行,同位角相等定理的应用.15、1【解析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故选:D.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.16、1【分析】利用“一锐角为30°的直角三角形中,30°所对的直角边等于斜边的一半”,通过等量代换可得.【详解】解:AC与DE相交于G,如图,∵为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵DE⊥AE,∴∠AGE=30°,∴∠CGD=30°,∵∠ACB=∠CGD+∠D,∴∠D=30°,∴CG=CD,设AE=x,则CD=3x,CG=3x,在中,AG=2AE=2x,∴AB=BC=AC=5x,∴BE=4x,BF=5x﹣6,在中,BE=2BF,即4x=2(5x﹣6),解得x=2,∴AC=5x=1.故答案为1.【点睛】直角三角形的性质,30°所对的直角边等于斜边的一半为本题的关键.17、1【分析】根据整式乘法的完全平方公式解答即可.【详解】解:∵(a+b)2=25,∴a2+2ab+b2=25,∴19+2ab=25,∴ab=1.故答案为:1.【点睛】本题考查了整式乘法的完全平方公式,属于基础题型,熟练掌握完全平方公式、灵活应用整体思想是解题的关键.18、10【分析】先证AF=CF,再根据Rt△CFB中建立方程求出AF长,从而求出△AFC的面积.【详解】解:∵将矩形沿AC折叠,∴∠DCA=∠FCA,∵四边形ABCD为矩形,∴DC∥AB,∴∠DCA=∠BAC,∴∠FCA=∠FAC,∴AF=CF,设AF为x,∵AB=8,BC=4,∴CF=AF=x,BF=8-x,在Rt△CFB中,,即,解得:x=5,∴S△AFC=,故答案为:10.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理知识是解决本题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;

(2)原式提取公因式即可.【详解】解:(1)原式.(2)原式.【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.20、(1)梯子上端A到建筑物的底端C的距离为2.4米;(2)梯脚B将外移0.8米.【分析】(1)在Rt△ABC中利用勾股定理求出AC的长即可;(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.【详解】(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7根据勾股定理可知AC=米答:梯子上端A到建筑物的底端C的距离为2.4米.(2)在△AˊBˊC中,∠ACB=90°,AˊBˊ=AB=2.5米,AˊC=AC-AAˊ=2.4-0.4=2米根据勾股定理可知BˊC=米米答:梯脚B将外移0.8米.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21、(1)证明见解析;(2)∠AEB=60°.【解析】(1)根据等边三角形的性质得出AC=BC,CD=CE,∠ACB=∠DCE=60°,求出∠ACD=∠BCE,然后根据SAS证明△ACD≌△BCE,即可得出AD=BE;(2)由△ECD是等边三角形可得∠CDE=∠CED=60°,根据补角的性质可求∠ADC=120°,根据全等三角形的性质可得∠BEC=∠ADC=120°,进而根据∠AEB=∠BEC﹣∠CED可得出答案.证明:(1)∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,又∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE;(2)在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC﹣∠CED=120°﹣60°=60°.点睛:本题考查了等边三角形的性质,全等三角形的判定和性质的应用,能推出△ACD≌△BCE是解此题的关键.22、(1);(2)【分析】(1)先把分母化为相同的式子,再进行去分母求解;(2)依次解出各不等式的解集,再求出其公共解集.【详解】解:(1)原分式方程可化为,方程两边同乘以得:解这个整式方程得:检验:当,所以,是原方程的根(2)解不等式①得:解不等式②得:不等式①、②的解集表示在同一数轴上:所以原不等式组的解集为:【点睛】此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.23、(1)B(1,0),点B的实际意义是甲、乙两人经过1小时相遇;(2)6km/h,4km/h.【分析】(1)两人相向而行,当相遇时y=0本题可解;

(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到丁地只用小时,乙走这段路程要用1小时,依此可列方程.【详解】(1)设AB解析式为

把已知点P(0,10),(,),代入得,解得:∴,

当时,,

∴点B的坐标为(1,0),

点B的意义是:

甲、乙两人分别从丙、丁两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为,乙的速度为,

由已知第小时时,甲到丁地,则乙走1小时路程,甲只需要小时,∴,∴,∴甲、乙的速度分别为、.【点睛】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.24、△ACD≌△BCE,理由见解析.【分析】由题意根据全等三角形的判定与性质结合等边三角形的性质从而证明△ACD≌△BCE即可.【详解】解:△ACD≌△BCE,理由如下:∵△ABC和△CDE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∵∠BCE=180°-∠ECD=120°,∠ACD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论