版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区满洲里市2025届数学八年级第一学期期末联考试题末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.能说明命题“对于任何实数a,都有>-a”是假命题的反例是()A.a=-2 B.a C.a=1 D.a=22.如图,△ABC≌△DCB,点A和点D是对应点,若AB=6cm,BC=8cm,AC=7cm,则DB的长为()A.6cm B.8cm C.7cm D.5cm3.下列图形中,对称轴条数最多的图形是()A. B. C. D.4.如图,,交于点,,,则的度数为().A. B. C. D.5.若方程组的解中,则等于()A.2018 B.2019 C.2020 D.20216.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE7.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm8.下面有4个汽车标志图案,其中是中心对称图形的是()A. B.C. D.9.计算结果为x2﹣y2的是()A.(﹣x+y)(﹣x﹣y) B.(﹣x+y)(x+y)C.(x+y)(﹣x﹣y) D.(x﹣y)(﹣x﹣y)10.下列实数中的无理数是()A.﹣ B.π C.1.57 D.11.吉安市骡子山森林公园风光秀丽,2018年的国庆假期每天最高气温(单位:℃)分别是:22,23,22,23,x,1,1,这七天的最高气温平均为23℃,则这组数据的众数是()A.23 B.1 C.1.5 D.2512.在中,分式的个数是()A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.如图,是中边中点,,于,于,若,则__________.14.分解因式的结果为__________.15.如图,已知,,AC=AD.给出下列条件:①AB=AE;②BC=ED;③;④.其中能使的条件为__________(注:把你认为正确的答案序号都填上).16.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.17.若分式的值为0,则y=_______18.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.三、解答题(共78分)19.(8分)对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.20.(8分)如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数21.(8分)解方程:(1);(2).22.(10分)如图,已知A(0,4),B(-4,1),C(3,0).(1)写出△ABC关于x轴对称的△A1B1C1的点A1,B1,C1的坐标;(2)求△A1B1C1的面积.23.(10分)探究活动:()如图①,可以求出阴影部分的面积是__________.(写成两数平方差的形式)()如图②,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式)()比较图①、图②阴影部分的面积,可以得到公式__________.知识应用,运用你所得到的公式解决以下问题:()计算:.()若,,求的值.24.(10分)如图,平分交于,交于,.(1)求证:;(2).25.(12分)如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:(2)过点F作于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM26.(1)计算:(2)已知,求的值.
参考答案一、选择题(每题4分,共48分)1、A【分析】先根据假命题的定义将问题转化为求四个选项中,哪个a的值使得不成立,再根据绝对值运算即可得.【详解】由假命题的定义得:所求的反例是找这样的a值,使得不成立A、,此项符合题意B、,此项不符题意C、,此项不符题意D、,此项不符题意故选:A.【点睛】本题考查了命题的定义、绝对值运算,理解命题的定义,正确转为所求问题是解题关键.2、C【分析】根据全等三角形的性质即可求出:AC=BD=7cm.【详解】解:∵△ABC≌△DCB,AC=7cm,∴AC=BD=7cm.故选:C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.3、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.4、A【分析】由和,可得到;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵∴∴∴故选:A.【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.5、C【分析】将方程组的两个方程相加,可得x+y=k−1,再根据x+y=2019,即可得到k−1=2019,进而求出k的值.【详解】解:,①+②得,5x+5y=5k−5,即:x+y=k−1,∵x+y=2019,∴k−1=2019,∴k=2020,故选:C.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.6、B【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【详解】当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS)考点:全等三角形的判定与性质.7、C【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到结论.【详解】∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=1.又∵BC=8,∴AC=10(cm).故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握计算公式.8、D【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【详解】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.D选项是中心对称.故选:D.【点睛】本题考查中心对称的定义,属于基础题,注意掌握基本概念.9、A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A.(﹣x+y)(﹣x﹣y)=(-x)2-y2=x2﹣y2,故A选项符合题意;B.(﹣x+y)(x+y),故B选项不符合题意;C.(x+y)(﹣x﹣y),故C选项不符合题意;D.(x﹣y)(﹣x﹣y)=,故D选项不符合题意;故选A.【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键.10、B【分析】无限不循环小数是无理数,根据定义判断即可.【详解】解:A.﹣是分数,属于有理数;B.π是无理数;C.1.57是有限小数,即分数,属于有理数;D.是分数,属于有理数;故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.11、A【分析】先根据平均数的定义列出关于x的方程,求解x的值,继而利用众数的概念可得答案.【详解】解:根据题意知,22+23+22+23+x+1+1=23×7,解得:x=23,则数据为22,22,23,23,23,1,1,所以这组数据的众数为23,故选:A.【点睛】本题主要考查众数,解题的关键是掌握平均数和众数的概念.12、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在中,分式有,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.二、填空题(每题4分,共24分)13、1【分析】根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=BC,FD=BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.14、(x-5)(3x-2)【分析】先把代数式进行整理,然后提公因式,即可得到答案.【详解】解:==;故答案为:.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法.15、①③④【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.【详解】∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;①∵AB=AE,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(SAS),故①正确;②∵BC=ED,AC=AD,而∠CAB和∠DAE不是相等两边的夹角,∴不能判定△ABC和△AED是否全等,故②错误;③∵∠C=∠D,AC=AD,∠CAB=∠DAE,∴△ABC≌△AED(ASA),故③正确;④∵∠B=∠E,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(AAS),故④正确.故答案为:①③④.【点睛】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.16、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.17、-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式的值等于0,则y=-1.
故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.18、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).三、解答题(共78分)19、x=﹣1或【分析】利用题中的新定义,分a<3与a>3两种情况求出方程的解即可.【详解】当a<3时,,即去分母得,2x-1=3x解得:x=﹣1经检验x=﹣1是分式方程的解;当a>3时,,即去分母得,2x-1=ax解得:经检验是分式方程的解.【点睛】本题主要考查解分式方程,关键是掌握解分式方程的步骤:去分母、解方程、验根、得出结论.20、28°.【分析】连接EC,根据题目已知条件可证的△ACE≌△BCE,故得到∠BCE=∠ACE,再证△BDE≌△BCE,可得到∠ECB=∠EDB,利用条件得到∠ACB=56°,从而得到∠BDE的度数.【详解】解:连接EC,如图所示∵在△ACE和△BCE中∴△ACE≌△BCE∴∠BCE=∠ACE∵BE平分∠DBC∴∠DBE=∠EBC∵CA=CB,BD=AC∴CB=DB在△BDE和△BCE中∴△BDE≌△BCE∴∠ECB=∠EDB∵∠BAC=62°,AC=BC∴∠ACB=180°-62°×2=56°∴∠BCE=∠ACE=∠EDB=56°÷2=28°∴∠EDB=28°【点睛】本题主要考查的是全等三角形的判定以及全等三角形的性质,正确的运用全等三角形的判定方法和性质是解题的关键.21、(1)无解;(2)【分析】(1)方程两边同乘化为整式方程求解,再验根即可;(2)方程两边同乘化为整式方程求解,再验根即可.【详解】(1)经检验,是增根,原方程无解.(2)经检验,是原方程的解.【点睛】本题考查解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键,注意分式方程需要验根.22、(1)A1(0,-4),B1(-4,-1),C1(3,0);(2)12.5【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出坐标即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)由题意可得:∵△ABC和△A1B1C1关于x轴对称,A(0,4),B(-4,1),C(3,0),∴A1(0,-4),B1(-4,-1),C1(3,0)(2)==28-12-3.5=12.5【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.23、();();();应用(1)a2+2ab+b2-4c2;(2).【详解】解:(1)阴影部分的面积是:a2-b2,
故答案是:a2-b2;
(2)长方形的面积是(a+b)(a-b),
故答案是:(a+b)(a-b);
(3)可以得到公式:a2-b2=(a+b)(a-b),
故答案是:a2-b2=(a+b)(a-b);
应用:(1)原式=(a+b)2−4c2
=a2+2ab+b2-4c2;
(2)4x2-9y2=(2x+3y)(2x-3y)=10,
由4x+6y=6得2x+3y=3,
则3(2x-3y)=10,
解得:2x-3y=.24、(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD≌△ACF即可得到结论;(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE⊥CF,结合BD平分∠ABC可证明BC=BF.【详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF,又∵AB=AC,AD=AF,∴△ABD≌△ACF,∴∠ABD=∠ACF;(2)在△CDE和△BDA中∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°又∠ABD=∠ACF,∠CDE=∠BDA,∴∠CED=∠BDA=90°,∴∠CEB=∠FEB=90°,∵BD平分∠ABC∴∠CBE=∠FBE又BE为公共边,∴△CEB≌△FEB,∴BC=BF.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理,证明三角形全等是证明线段或角相等的重要手段.25、(1)证明见解析;(2)证明见解析.【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开展节能宣传活动总结
- 淘宝客服试用期转正工作总结
- 活着的读书心得
- 23.1.1 锐角的三角函数 同步练习
- 23.2 相似图形 同步练习
- 江苏省扬州市扬大附中2024-2025学年高一上学期联考英语试卷(含解析)
- 河北省秦皇岛市卢龙县2024-2025学年八年级上学期期中地理试题
- 天津地区高考语文五年高考真题汇编-名篇名句默写
- 语文教学论教案 第二章 语文教材
- 个人车位买卖协议书范本
- 国网基建各专业考试题库大全-技术专业(考题汇总)
- 基于社会效益与经济效益的大型医疗设备成本效益分析
- 国家开放大学《护理科研方法》形考任务1-4参考答案
- 体育社会学 第1章 体育社会学导论
- 医院服务礼仪培训课件
- 劳务实名制工资管理承诺书
- 低年级绘本 校本课程纲要
- 推拉门安装技术交底
- 中班健康《身体上的洞洞》课件
- 2023年04月山东济南市槐荫区残联公开招聘残疾人工作“一专两员”公开招聘笔试参考题库+答案解析
- 2023石景山区高三一模数学答案
评论
0/150
提交评论