云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题含解析_第1页
云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题含解析_第2页
云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题含解析_第3页
云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题含解析_第4页
云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明盘龙区联考2025届数学八年级第一学期期末复习检测模拟试题末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.分式有意义,则的取值范围是()A. B. C. D.2.如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有()A.4个 B.3个 C.2个 D.1个3.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门 B.升降台C.栅栏 D.窗户4.下列运算错误的是A. B.C. D.5.下列运算:,,,其中结果正确的个数为()A.1 B.2 C.3 D.46.以下列各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm7.已知点A的坐标为(﹣2,3),则点A关于y轴的对称点的坐标是()A.(﹣2,3) B.(2,3) C.(2,﹣3) D.(﹣2,﹣3)8.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣19.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有()个.A.4 B.3 C.2 D.110.下面的图形中,是轴对称图形的是()A. B. C. D.11.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)12.如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1 B. C.2 D.二、填空题(每题4分,共24分)13.在底面直径为3cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____cm.(结果保留π)14.若,则________.15.若△ABC中,AD是BC边上的高线,AE平分∠BAC,∠B=40°,∠C=50°,则∠EAD=_____°.16.如图,已知雷达探测器在一次探测中发现了两个目标A,B,其中A的位置可以表示成(60°,6),那么B可以表示为____________,A与B的距离为____________17.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②点D在线段AB的垂直平分线上;③S△DAC:S△ABC=1:2,正确的序号是_____.18.点(2,b)与(a,-4)关于y轴对称,则a=,b=.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB=6,OC=1.点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线与y轴平行,直线交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线恰好过点C.(1)求点A和点B的坐标;(2)当0<t<3时,求m关于t的函数关系式;(3)当m=3.1时,请直接写出点P的坐标.20.(8分)如图,在和中,、、、在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①;②;③;④解:我写的真命题是:在和中,已知:___________________.求证:_______________.(不能只填序号)证明如下:21.(8分)如图,在△ABC中,AB=AC,D为BC的中点,E,F两点分别在AB,AC边上且BE=CF.求证:DE=DF.22.(10分)在中,,,在内有一点,连接,,且.(1)如图1,求出的大小(用含的式子表示)(2)如图2,,,判断的形状并加以证明.23.(10分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.24.(10分)(1)计算:(2)分解因式:25.(12分)如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.26.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】要使分式有意义,分式的分母不能为0,即,解得x的取值范围即可.【详解】∵有意义,∴,解得:,故选:D.【点睛】解此类问题只要令分式中分母不等于0,求得字母的值即可.2、B【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断.【详解】∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠CAD=∠BAE,又∵AD=AB,AC=AE,∴△CAD≌△EAB(SAS),∴DC=BE.故①正确.∵△CAD≌△EAB,∴∠ADC=∠ABE.设AB与CD的交点为O.∵∠AOD=∠BOF,∠ADC=∠ABE,∴∠BFO=∠BAD=90°,∴CD⊥BE.故③正确.过点A作AP⊥BE于P,AQ⊥CD于Q.∵△CAD≌△EAB,AP⊥BE,AQ⊥CD,∴AP=AQ,∴AF平分∠DFE.故④正确.②无法通过已知条件和图形得到.故选B.【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键.3、C【解析】根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.【详解】A.由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;B.升降台也是运用了四边形易变形的特性;C.栅栏是由一些三角形焊接而成的,它具有稳定性;D.窗户是由四边形构成,它具有不稳定性.故选C.【点睛】此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.4、D【解析】试题分析:根据分式的运算法则逐一计算作出判断:A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.5、B【分析】由题意根据同底数幂的除法与乘法、幂的乘方和积的乘方,依次对选项进行判断即可.【详解】解:,故计算错误;,故计算正确;,故计算错误;,故计算正确;正确的共2个,故选:B.【点睛】本题考查同底数幂的除法与乘法、幂的乘方和积的乘方问题,关键是根据同底数幂的除法与乘法以及幂的乘方和积的乘方的法则进行分析.6、B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A.2cm,4cm,6cm可得,2+4=6,故不能组成三角形;

B.8cm,6cm,4cm可得,6+4>8,故能组成三角形;

C.14cm,6cm,7cm可得,6+7<14,故不能组成三角形;

D.2cm,3cm,6cm可得,2+3<6,故不能组成三角形;

故选B.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.7、B【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:∵点A的坐标为(-2,3),∴点A关于y轴的对称点的坐标是(2,-3),故选B.【点睛】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.8、D【详解】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选D.【点睛】本题考查1、负指数幂;2、零指数幂;3、绝对值;4、乘方,计算难度不大.9、B【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,利用“边角边”证明△ABE和△CAD全等,然后分析判断各选项即可.【详解】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°−∠BPQ=90°−60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选B.【点睛】此题考查全等三角形的判定与性质,等边三角形的性质,解题关键在于掌握各性质定义.10、C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【详解】A选项图形不是轴对称图形,不符合题意;B选项图形不是轴对称图形,不符合题意;C选项图形是轴对称图形,符合题意;D选项图形不是轴对称图形,不符合题意;故选C.【点睛】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.11、D【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【详解】解:方程两边同乘x(x+4),得2x=1故选D.12、B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.二、填空题(每题4分,共24分)13、.【详解】试题分析:如图所示,∵无弹性的丝带从A至C,∴展开后AB=3πcm,BC=3cm,由勾股定理得:AC==cm.故答案为.考点:1.平面展开-最短路径问题;2.最值问题.14、【解析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.【详解】,,故2y=x,则,故答案为:.【点睛】本题考查了比例的性质,正确将原式变形是解题关键.15、1【分析】由三角形的高得出,求出,由三角形内角和定理求出,由角平分线求出,即可得出的度数.【详解】解:中,是边上的高,,,,平分,,.故答案为:1.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.16、【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【详解】∵(a,b)中,b表示目标与探测器的距离;a表示以正东为始边,逆时针旋转后的角度,∴B可以表示为.∵A、B与雷达中心的连线间的夹角为150°-60°=90°,∴AB==故填:(1).(2)..【点睛】本题考查了坐标确定位置,解题时由已知条件正确确定A、B的位置及勾股定理的应用是解决本题的关键.17、①②【解析】①据作图的过程可以判定AD是∠BAC的角平分线;②利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的垂直平分线上;③利用10度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】①根据作图的过程可知,AD是∠BAC的平分线.

故①正确;

②如图,∵在△ABC中,∠C=90°,∠B=10°,

∴∠CAB=60°.

又∵AD是∠BAC的平分线,

∴∠1=∠2=∠CAB=10°,∵∠1=∠B=10°,

∴AD=BD,∴△ABD为等腰三角形∴点D在AB的垂直平分线上.

故②正确;

③∵如图,在直角△ACD中,∠2=10°,

∴CD=AD,

∴BC=CD+BD=AD+AD=AD,∴S△DAC=AC•CD=AC•AD,

∴S△ABC=AC•BC=AC•AD=AC•AD,

∴S△DAC:S△ABC=AC•AD:AC•AD=1:1.

故③错误.

故答案为:①②.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图,解题关键是熟悉等腰三角形的判定与性质.18、-2,-4.【解析】试题分析:关于y轴对称的点的坐标的特征:纵坐标相同,横坐标互为相反数.由题意得,.考点:关于y轴对称的点的坐标的特征.三、解答题(共78分)19、(1)(3,3),(6,0)(2)(0<t<3)(3)P(,0)或(,0)【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)作CN⊥x轴于N,如图,先利用勾股定理计算出CN得到C点坐标为(4,-3),再利用待定系数法分别求出直线OC的解析式,直线OA的解析式,则根据一次函数图象上点的坐标特征得到Q、R的坐标,从而得到m关于t的函数关系式;(3)利用待定系数法求出直线AB的解析式,直线BC的解析式,然后分类讨论:当0<t<3,3≤t<4,当4≤t<6时,分别列出方程,然后解方程求出t得到P点坐标.【详解】(1)由题意△OAB是等腰直角三角形,过点A作AM⊥OB于M,如图:

∵OB=6,∴AM=OM=MB=OB=3,

∴点A的坐标为(3,3),点B的坐标为(6,0);(2)作CN⊥轴于N,如图,

∵时,直线恰好过点C,

∴ON=4,

在Rt△OCN中,CN=,∴C点坐标为(4,-3),

设直线OC的解析式为,

把C(4,-3)代入得,解得,∴直线OC的解析式为,设直线OA的解析式为,

把A(3,3)代入得,解得,

∴直线OA的解析式为,

∵P(t,0)(0<t<3),

∴Q(,),R(,),∴QR=,即();(3)设直线AB的解析式为,

把A(3,3),B(6,0)代入得:,解得,

∴直线AB的解析式为,

同理可得直线BC的解析式为,

当0<t<3时,,若,则,解得,此时P点坐标为(2,0);当3≤t<4时,Q(,),R(,),∴,若,则,解得(不合题意舍去);当4≤t<6时,Q(,),R(,),∴,若,则,解得,此时P点坐标为(,0);综上所述,满足条件的P点坐标为(2,0)或(,0).【点睛】本题考查了一次函数与几何的综合题:熟练掌握等腰直角三角形的性质和一次函数图象上点的坐标特征;会运用待定系数法求一次函数解析式;理解坐标与图形性质,会利用点的坐标表示线段的长;学会运用分类讨论的思想解决数学问题.20、已知:B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明见解析;或已知:B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明见解析(任选其一即可)【分析】根据题意可将①②④作为题设,③作为结论,然后写出已知和求证,再利用SSS即可证出△ABC≌△DEF,从而证出结论;或将①③④作为题设,②作为结论,然后写出已知和求证,再利用SAS即可证出△ABC≌△DEF,从而证出结论,.【详解】将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF.或将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴AC=DF.以上两种方法任选其一即可.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.21、见解析【分析】由AB=AC,D是BC的中点,可得∠B=∠C,BD=CD,又由SAS,可判定△BED≌△CFD,继而证得DE=DF.【详解】证明:如图1.∵在△ABC中,,∴∠B=∠C,∵D为BC的中点,.在△BDE与△CDF中,∴△BDE≌△CDF,∴.【点睛】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1);(2)是等边三角形.证明见解析.【分析】(1)由等腰三角形的性质,得到∠ABC=,由,即可求出;(2)连接,,则为等边三角形,然后得到,得到,,从而得到,则,即可得到为等边三角形.【详解】解:(1),,,∴,,,,∴;(2)是等边三角形.理由如下:连接,,,为等边三角形在与中,,,,,在和中,,是等边三角形.【点睛】本题考查了等边三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,角平分线的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确找到边的关系和角的关系,从而进行证明.23、(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.【分析】(1)根据同角的补角相等,即可得到∠CBF=∠DAB,进而得到AD∥BC;(2)依据∠BCD=2∠DCE,∠BCD=2∠E,即可得出∠E=∠DCE,进而判定CD∥EF;(3)依据AD∥BC,可得∠ADC+∠DCB=180°,进而得到∠COD=90°,即可得出CE⊥DF.【详解】解:(1)∵∠DAE+∠CBF=180°,∠DAE+∠DAB=180°,∴∠CBF=∠DAB,∴AD∥BC;(2)CD与EF平行.∵CE平分∠BCD,∴∠BCD=2∠DCE,又∵∠BCD=2∠E,∴∠E=∠DCE,∴CD∥EF;(3)∵D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论