版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省绍兴市越城区袍江中学数学八年级第一学期期末考试试题考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为().A. B.C. D.2.如图,△中,,是中点,下列结论,不一定正确的是()A. B.平分 C. D.3.在实数0,,-2,中,其中最小的实数是()A. B. C. D.4.已知点到轴的距离为,到轴距离为,且在第二象限内,则点的坐标为()A. B. C. D.不能确定5.如图,为等边三角形,为延长线上一点,CE=BD,平分,下列结论:(1);(2);(3)是等边三角形,其中正确的个数为()A.0个 B.1个 C.2个 D.3个6.下列四个图案中,不是轴对称图形的是()A. B. C. D.7.下列多项式中,不能用平方差公式分解的是()A. B.C. D.8.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或49.在平面直角坐标系中,点与点关于轴对称,则()A., B.,C., D.,10.已知一次函数,函数值随自变量的增大而减小,那么的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点与点关于轴对称,则_______.12.若点M(m,﹣1)关于x轴的对称点是N(2,n),则m+n的值是_____.13.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为14.在中,,则的度数是________°.15.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.16.若分式的值为0,则y=_______17.若2x=3,4y=5,则2x﹣2y+1的值为_____.18.求的值,可令,则,因此.仿照以上推理,计算出的值为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A,x轴上有一点P(a,0).(1)求点A的坐标;(2)若△OAP为等腰三角形,则a=;(3)过点P作x轴的垂线(垂线位于点A的右侧)、分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.20.(6分)如图1,将等腰直角三角形绕点顺时针旋转至,为上一点,且,连接、,作的平分线交于点,连接.(1)若,求的长;(2)求证:;(3)如图2,为延长线上一点,连接,作垂直于,垂足为,连接,请直接写出的值.21.(6分)已知,计算x﹣y2的值.22.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?23.(8分)两块等腰直角三角尺与(不全等)如图(1)放置,则有结论:①②;若把三角尺绕着点逆时针旋转一定的角度后,如图(2)所示,判断结论:①②是否都还成立?若成立请给出证明,若不成立请说明理由.24.(8分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.25.(10分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.26.(10分)计算及解方程组解方程组:
参考答案一、选择题(每小题3分,共30分)1、A【解析】设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,.故选A.2、C【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】解:∵AB=AC,
∴∠B=∠C,
∵AB=AC,D是BC中点,
∴AD平分∠BAC,AD⊥BC,
所以,结论不一定正确的是AB=2BD.
故选:C.【点睛】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.3、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小,把这四个数从小到大排列,即可得出答案.【详解】∵实数0,,-2,中,,∴其中最小的实数为-2;
故选:A.【点睛】此题考查了实数的大小比较,用到的知识点是正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.4、A【分析】根据坐标的表示方法由点到x轴的距离为3,到y轴的距离为2,且它在第二象限内即可得到点的坐标为.【详解】解:∵点到x轴的距离为3,到y轴的距离为2,且它在第二象限内,
∴点的坐标为.
故答案为.【点睛】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.5、D【分析】根据等边三角形的性质得出,,求出,根据可证明即可证明与;根据全等三角形的性质得出,,求出,即可判断出是等边三角形.【详解】是等边三角形,,,,平分,,,在和中,,故(2)正确;∴∴,故(1)正确;∴是等边三角形,故(3)正确.∴正确有结论有3个.故选:D.【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.6、D【解析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.是轴对称图形,故该选项不符合题意,B.是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项不符合题意,D.不是轴对称图形,故该选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.8、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【点睛】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.9、A【分析】利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,1)与点B(2,n)关于y轴对称,
∴m=-2,n=1.
故选:A.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键,对称点的坐标规律是:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(1)关于原点对称的点,横坐标与纵坐标都互为相反数.10、C【解析】解:由题意得:1+2m<0,解得:m<.故选C.二、填空题(每小题3分,共24分)11、【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a、b的值,即可得出答案.【详解】解:∵点与点关于轴对称,∴,,解得:,,∴,故答案为:.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.12、1【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M(m,﹣1)关于x轴的对称点是N(2,n),∴m=2,n=1,∴m+n=1.故答案为:1.【点睛】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.13、【详解】因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.14、60【分析】用分别表示出,再根据三角形的内角和为即可算出答案.【详解】∵∴∴∴∴故答案为:60【点睛】本题考查了三角形的内角和,根据题目中的关系用分别表示出是解题关键.15、28【详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2816、-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式的值等于0,则y=-1.
故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.17、【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.【详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=.故答案为:.【点睛】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.18、【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题(共66分)19、(1)A(4,3);(2)±5或8或;(3)1【分析】(1)点A是两直线的交点,其坐标即方程组的解;(2)分OA=PO、OA=AP、AP=OP适中情况,分别求解即可;(3)P(a,0),则分别用含a的式子表示出B、C的坐标,从而表示出BC的长度,用勾股定理求得OA,然后根据BC=OA求出a的值,从而利用三角形面积公式求解.【详解】解:(1)由题意:解得:,故点A(4,3);(2)点A(4,3),则OA=,①当OA=PO=P1O时,此时OA=5=PO=P1O,即a=±5②当OA=AP时,如图,过点A做AM⊥x轴于点M此时OM=MP=4∴OP=8则点P(8,0),即a=8;③当AP=OP时,如图所示,连接AP,过点A作AH⊥x轴于点H,AP=PO=a,则PH=4﹣a,则(4﹣a)2+9=a2,解得:a=;综上,a=±5或8或;故答案为:±5或8或;(3)∵P(a,0),则点B、C的坐标分别为:(a,a)、(a,﹣a+7),∴BC=a-(-a+7)=a+a﹣7=又∵BC=OA且OA=∴=×5=7,解得:a=8,故点P(8,0),即OP=8;△OBC的面积=×BC×OP=×7×8=1.【点睛】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.20、(1);(2)见解析;(3)【分析】(1)根据题意及等腰直角三角形的性质可知AF=AD=DE=4,再利用勾股定理求出AE,然后根据线段之间的关系求解即可;(2)过点A作AP⊥BF,根据角平分线、等腰三角形的性质可证明△PAG为等腰直角三角形,过点C作CQ⊥BF,利用AAS可证明△ABP≌△BCQ,再利用全等的性质及线段间的关系可证明△CQG为等腰直角三角形,最后利用等腰直角三角形边的性质可证明结论;(3)过点B作BH⊥BN交NC的延长线于点H,利用AAS可证明△ABN≌△CBH,再利用全等的性质可证明△BHN为等腰直角三角形,从而可得到答案.【详解】解:(1)由题可得,∴在等腰中,,∴;(2)证明:如图,过作,∵平分,且,∴,又∵,∴,,由题可得,,∴,∴,∴,即为等腰直角三角形,∴,,过作,∵,∴,在与中,,∴△ABP≌△BCQ(AAS),∴,,又∵,∴,∴,即,∴,∴为等腰直角三角形,∴,∴;(3)如图,过点B作BH⊥BN交NC的延长线于点H,∵BH⊥BN,∠ABC=90°,∴∠HBC+∠CBN=∠ABN+∠CBN,∴∠HBC=∠ABN,∵BH⊥BN,AN⊥CM,∴∠BHC+∠CNB=∠ANB+∠CBN,∴∠BHC=∠ANB,在△ABN和△CBH中,,∴△ABN≌△CBH(AAS),∴BH=BN,CH=AN,∴△BHN为等腰直角三角形,∴HN=BN,又∵HN=HC+CN=AN+CN,∴AN+CN=BN,∴.【点睛】本题考查了旋转的性质,等腰直角三角形的判定性质,全等三角形的判定与性质等知识,较为综合,关键在于作辅助线构造全等三角形.21、-【详解】由题意得:,解得:x=,把x=代入y=﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.22、A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【分析】设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,列方程进行求解即可.【详解】设B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料,由题意得,,解此分式方程得:,经检验是分式方程的解,且符合题意,当时,,答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.23、①AC=BD②AC⊥BD都还成立,理由见解析【分析】利用全等三角形的判定方法(SAS)得出△ACO≌△BDO,进而得出AC=BD,再利用三角形内角和定理得出AC⊥BD.【详解】解:①AC=BD②AC⊥BD都还成立,理由如下:如图,设AO、AC与BD分别交于点E、N,∵∠AOB=∠COD=90°,∴∠AOB+∠DOA=∠COD+∠DOA,即∠COA=∠DOB,在△ACO和△BDO中,,∴△ACO≌△BDO(SAS),∴AC=BD,∠OBD=∠OAC,又∵∠BEO=∠AED,∴∠AOB=∠ANE=90°,∴AC⊥BD,综上所述:①AC=BD②AC⊥BD都还成立.【点睛】本题主要考查了全等三角形的判定与性质以及三角形内角和定理,解题的关键是根据已知得出△ACO≌△BDO.24、(1)y=﹣x+2;(2)当y<1时,x>1.【分析】(1)采用待定系数法,求解即可;(2)根据函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论