版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春绿园区五校联考2025届数学八上期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点P−1−2a,5关于x轴的对称点和点Q3,b关于y轴的对称点相同,则点Aa,bA.1,−5 B.1,5 C.−1,5 D.−1,−52.如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A. B. C. D.3.设(2a+3b)2=(2a﹣3b)2+A,则A=()A.6ab B.12ab C.0 D.24ab4.下列语句是命题的是()(1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余.(3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2) B.(3)(4) C.(2)(3) D.(1)(4)5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来()A.SAS B.ASA C.AAS D.SSS6.下列图形中,是轴对称图形的是()A. B. C. D.7.据广东省旅游局统计显示,年月全省旅游住宿设施接待过夜旅客约人,将用科学计数法表示为()A. B. C. D.8.下列选项所给条件能画出唯一的是()A.,, B.,,C., D.,,9.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程120千米,线路二全程150千米,汽车在线路二上行驶的平均时速是线路一上车速的2倍,线路二的用时预计比线路一用时少小时,如果设汽车在线路一上行驶的平均速度为千米/时,则下面所列方程正确的是()A. B.C. D.10.分式方程=的解是()A.x=﹣1 B.x=0 C.x=1 D.无解二、填空题(每小题3分,共24分)11.已知x,y满足方程的值为_____.12.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=_____.13.当分别取-2019、-2018、-2017、...、-3、-2、-1、0、1、、、...、、、时,计算分式的值,再将所得结果相加,其和等于________14.如图,将绕点旋转90°得到,若点的坐标为,则点的坐标为__________.15.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是_____.16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为__________.17.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.三、解答题(共66分)19.(10分)如图所示,已知:△ABC和△CDE都是等边三角形.求证:AD=BE20.(6分)如图,已知△ABC的面积为16,BC=8,现将△ABC沿直线向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高.(2)连结AE、AD,设AB=5①求线段DF的长.②当△ADE是等腰三角形时,求a的值.21.(6分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____,小明在停留之前的速度为____;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.22.(8分)一辆汽车开往距离出发地200km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前30分钟到达目的地,求前1小时的行驶速度.23.(8分)计算(1)(﹣)﹣2﹣23×1.125+21151+|﹣1|;(2)[(a+b)2﹣(a﹣b)2]÷2ab24.(8分)计算:;25.(10分)张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为千米和千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行米,求张康和李健的速度分别是多少米分?(2)两人到达绿道后约定先跑千米再休息,李健的跑步速度是张康跑步速度的倍,两人在同起点,同时出发,结果李健先到目的地分钟.①当,时,求李健跑了多少分钟?②求张康的跑步速度多少米分?(直接用含,的式子表示)26.(10分)某校初二数学兴趣小组活动时,碰到这样一道题:“已知正方形,点分别在边上,若,则”.经过思考,大家给出了以下两个方案:(甲)过点作交于点,过点作交于点;(乙)过点作交于点,作交的延长线于点;同学们顺利地解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);图1图2(2)如果把条件中的“”改为“与的夹角为”,并假设正方形的边长为l,的长为(如图2),试求的长度.
参考答案一、选择题(每小题3分,共30分)1、B【解析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y)∴P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b),因而就得到关于a,b的方程,从而得到a,b的值.则A(a,b)关于x轴对称的点的坐标就可以得到.【详解】∵P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b);∴-1-2a=-3,b=-5;∴a=1,∴点A的坐标是(1,-5);∴A关于x轴对称的点的坐标为(1,5).故选B.【点睛】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.2、A【解析】∵直线l从点B开始沿着线段BD匀速平移到D,∴在B点时,EF的长为0,在A点长度最大,到D点长为0,∴图象A符合题意,故选A.3、D【解析】∵(2a+3b)2=4a2+12ab+9b2,(2a-3b)2+A=4a2-12ab+9b2+A,(2a+3b)2=(2a-3b)2+A∴4a2+12ab+9b2=4a2-12ab+9b2+A,∴A=24ab;故选D.4、A【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个小题进行逐一分析即可;【详解】(1)两点之间,线段最短符合命题定义,正确;(2)如果两个角的和是90度,那么这两个角互余,符合命题定义,正确.(3)请画出两条互相平行的直线只是做了陈述,不是命题,错误;(4)过直线外一点作已知直线的垂线没有做出判断,不是命题,错误,故选:A.【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.5、D【解析】试题解析:在△ADC和△ABC中,
,
∴△ADC≌△ABC(SSS),
∴∠DAC=∠BAC,
即∠QAE=∠PAE.
故选D.6、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、是轴对称图形,故本选项符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、B【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4<8,不能构成三角形,故A错误;B、,,,满足ASA条件,能画出唯一的三角形,故B正确;C、,,不能画出唯一的三角形,故C错误;D、,,,不能画出唯一的三角形,故D错误;故选:B.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.9、A【分析】根据题意可得在线路二上行驶的平均速度为2xkm/h,根据线路二的用时预计比线路一用时少小时,列方程即可.【详解】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为2xkm/h,由题意得:故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.10、A【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选:A.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.二、填空题(每小题3分,共24分)11、【分析】根据二元一次方程组的加减消元法,即可求解.【详解】,①×5﹣②×4,可得:7x=9,解得:x=,把x=代入①,解得:y=,∴原方程组的解是:.故答案为:.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.12、﹣1.【分析】直线y=3x+b与y=ax-1的交点的横坐标为-1,则x=-1就是关于x的方程3x+b=ax-1的解.【详解】∵直线y=3x+b与y=ax﹣1的交点的横坐标为﹣1,∴当x=﹣1时,3x+b=ax﹣1,∴关于x的方程3x+b=ax﹣1的解为x=﹣1.故答案为﹣1.13、-1【分析】设a为负整数,将x=a代入得,将代入得,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】解:∵将x=a时,代入得,将时,代入得:,∴+,即当x互为负倒数时,两分式的和为0,当时,代入故互为负倒数的相加全为0,只有时为-1.∴所有结果相加为-1.故答案为:-1.【点睛】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.14、【分析】根据点A的坐标得出点A到x轴和y轴的距离,以此得出旋转后到x轴和y轴的距离,得出的坐标.【详解】已知点的坐标为,点A到x轴的距离为b,点A到y轴的距离为a,将点A绕点旋转90°得到点,点到x轴的距离为a,点到y轴的距离为b,点在第二象限,所以点的坐标为.故答案为:.【点睛】本题考查了坐标轴上的点绕原点旋转的问题,熟练掌握计算变化后的点的横坐标和纵坐标是解题的关键.15、乙队【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲2>S乙2,
∴队员身高比较整齐的球队是乙,
故答案为:乙队.【点睛】此题考查方差的意义.解题关键在于掌握方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【详解】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x棵,根据题意可得:,故答案为.17、1【分析】根据三线合一定理即可求解.【详解】解:∵AB=AC,AD平分∠BAC,∴BD=BC=1.故答案是:1.考点:等腰三角形的性质.18、1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=1,故估计n大约是1,故答案为1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、证明见解析.【解析】试题分析:易证∠ACD=∠BCE,即可证明△ACD≌△BCE,根据全等三角形对应边相等的性质即可解题.试题解析:∵∠ACB=∠DCE,∠ACD+∠BCD=∠ACB,∠BCE+∠BCD=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.考点:1.全等三角形的判定与性质;2.等边三角形的性质.20、(1)4;(2)①;②或5或6【分析】(1)根据三角形的面积公式即可求出结论;(2)①作AG⊥BC,垂足为G,根据勾股定理即可求出BG,再根据勾股定理即可求出AC,最后根据平移的性质即可求出结论;②根据等腰三角形腰的情况分类讨论,根据平移的性质、勾股定理和等腰三角形的性质分别求出结论即可.【详解】解:(1)△ABC的BC边上的高为16×2÷8=4(2)①作AG⊥BC,垂足为G,由(1)知AG=4在Rt△AGB中,AB=5,AG=43在Rt△AGC中,AG=4,GC=BC-BG=5由平移可得DF=AC=②若△ADE是等腰三角形,可分以下情况Ⅰ、当AD=AE时,由题可得:AD=BE=a=AE在Rt△AGE中,EG=a-3根据勾股定理可得:解得:Ⅱ、当AD=DE时,由平移可得DE=AB=5∴a=AD=DE=5Ⅲ、当DE=AE时,则AB=AE∵AG⊥BC∴BE=2BG=6即a=6综上可得:当a=或5或6时,△ADE是等腰三角形【点睛】此题考查的是三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质,掌握三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质和分类讨论的数学思想是解决此题的关键.21、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;小明2小时内行驶的路程是20km,据此可以求出他的速度;
(2)由图象可知:B(4,20),C(5,35),设线段的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;
(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当时,10t=10(t-1);当时,20=10(t-1);当时,15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;由图象可知:小明2小时内行驶的路程是20km,所以他的速度是(km/h);故答案是:2;10.
(2)设线段的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴,∴,∴线段的函数表达式为s=15t-40;
(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50km,∴小华的速度=(km/h),下面分三种情况讨论两人在途中相遇问题:当时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当时,两人在途中相遇,则20=10(t-1),解得t=3;当时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h或t=6h时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.22、原计划的行驶速度为80千米/时.【分析】首先设原计划的行驶速度为x千米/时,根据题意可得等量关系:原计划所用时间实际所用时间=30分钟,根据等量关系列出方程,再解即可.【详解】解:设原计划的行驶速度为x千米/时,由题意得:,解得:,经检验:x=80是原分式方程的解.答:原计划的行驶速度为80千米/时.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出原计划所用时间和实际所用时间,根据时间关系列出分式方程.23、(1)5;(2)2.【分析】(1)分别根据负整数指数幂、幂的运算、零指数幂、绝对值运算计算出各部分,再进行加减运算即可;(2)先利用完全平方公式计算小括号,再合并同类项,最后根据整式的除法运算法则计算即可.【详解】解:(1);(2).【点睛】本题考查实数的混合运算、整式的混合运算,掌握运算法则是解题的关键.24、8x+29【分析】先乘除去括号,再加减;主要环节是根据乘法公式展开括号.【详解】解:原式==【点睛】本题考查了整式的混合运算,主要涉及了乘法公式,灵活利用完全平方公式及平方差公式进行计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论