2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题含解析_第1页
2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题含解析_第2页
2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题含解析_第3页
2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题含解析_第4页
2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省赵县联考八年级数学第一学期期末学业水平测试试题试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某教师招聘考试分笔试和面试两个环节进行,其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为()A.85分 B.86分 C.87分 D.88分2.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长等于()A.10cm B.8cm C.12cm D.9cm3.要使分式有意义,则x的取值范围是()A.x= B.x> C.x< D.x≠4.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5 B.,, C.8,15,17 D.5,12,135.下列运算中正确的是()A.B.C.D.6.一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最大值是()A. B. C. D.7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.如图,△ABC≌△AED,点D在BC上,若∠EAB=42°,则∠DAC的度数是()A.48° B.44° C.42° D.38°9.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等 B.斜边和一锐角对应相等C.斜边和一直角边对应相等 D.两个面积相等的直角三角形10.若x2+6x+k是完全平方式,则k=()A.9 B.﹣9 C.±9 D.±3二、填空题(每小题3分,共24分)11.如图:在中,,以顶点为圆心,适当长为半径画弧,分别交、于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积为____.12.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.,,,,13.若是正整数,则满足条件的的最小正整数值为__________.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.15.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于_____.16.已知:如图,和为两个共直角顶点的等腰直角三角形,连接、.图中一定与线段相等的线段是__________.17.若m+n=1,mn=2,则的值为_____.18.如图,在中,,若,则___度(用含的代数式表示).三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.20.(6分)已知的三边长、、满足,试判定的形状.21.(6分)(习题再现)课本中有这样一道题目:如图,在四边形中,分别是的中点,.求证:.(不用证明)(习题变式)(1)如图,在“习题再现”的条件下,延长与交于点,与交于点,求证:.(2)如图,在中,,点在上,,分别是的中点,连接并延长,交的延长线于点,连接,,求证:.22.(8分)如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.求证:AE=DC23.(8分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.24.(8分)端午节来临之前,某大型超市对去年端午节这天销售三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图.根据图中信息解答下列问题:(1)去年端午节这天共销售了______个粽子.(2)试求去年端午节销售品牌粽子多少个,并补全图1中的条形统计图.(3)求出品牌粽子在图2中所对应的圆心角的度数.(4)根据上述统计信息,今年端午节期间该商场对三种品牌的粽子应如何进货?请你提一条合理化的建议.25.(10分)如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.26.(10分)如图,在中,.(1)作的角平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法)(2)若,过点作于,求的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据加权平均数的计算方法进行计算即可得解.【详解】依题意得:分,故选:D.【点睛】本题主要考查了加权平均数,熟练掌握加权平均数得解法是解决本题的关键.2、A【解析】试题分析:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=,AE=,∴AE=AC=BC,∴DE+BD=CD+BE=BC,∵AC=BC,∴BD+DE=AC=AE,∴△BDE的周长是BD+DE+BE=AE+BE=AB=1.故选A.考点:1.角平分线的性质;2.垂线;3.勾股定理;4.等腰直角三角形.3、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、,能构成直角三角形;、,不能构成直角三角形;、,能构成直角三角形;、,能构成直角三角形.故选:.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【分析】A、根据同底数幂的除法法则:底数不变,只把指数相减,得出结果,作出判断;B、分子分母中不含有公因式,故不能约分,可得本选项错误;C、把分子利用完全平方公式分解因式,分母利用平方差公式分解因式,找出分子分母的公因式,分子分母同时除以,约分后得到最简结果,即可作出判断;D、分子分母中不含有公因式,故不能约分,可得本选项错误.【详解】解:A、,本选项错误;B、分子分母没有公因式,不能约分,本选项错误;C、,本选项正确;D、分子分母没有公因式,不能约分,本选项错误,故选:C.【点睛】本题主要考查了分式的化简,熟练掌握分式的基本性质是解题关键.6、C【分析】根据三角形的三边关系求出第三边长的取值范围,再结合已知条件求出第三边长的最大整数值,即可求出三角形的周长最大值.【详解】解:∵一个三角形的两边长分别为和∴5-2<第三边长<5+2解得:3<第三边长<7∵第三边长为整数,∴第三边长可以为4、5、6∴第三边长的最大值为6∴三角形的周长最大值为2+5+6=13故选C.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围和求三角形的周长,掌握三角形的三边关系和三角形的周长公式是解决此题的关键.7、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.8、C【分析】根据全等三角形的性质得到∠BAC=∠EAD,于是可得∠DAC=∠EAB,代入即可.【详解】解:∵△ABC≌△AED,

∴∠BAC=∠EAD,∴∠EAB+∠BAD=∠DAC+∠BAD,

∴∠DAC=∠EAB=42°,

故选:C.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.9、D【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.10、A【解析】试题分析:若x2+6x+k是完全平方式,则k是一次项系数6的一半的平方.解:∵x2+6x+k是完全平方式,∴(x+3)2=x2+6x+k,即x2+6x+1=x2+6x+k∴k=1.故选A.考点:完全平方式.二、填空题(每小题3分,共24分)11、6【解析】作⊥,由角平分线的性质知,再根据三角形的面积公式计算可得.【详解】作于.

由作图知是的平分线,

∴,

∵,

∴,

故答案为:.【点睛】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12、a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5【解析】(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,点睛:本题考查了完全平方公式的应用,解此题的关键是能读懂图形,先认真观察适中的特点,得出a的指数是从1到0,b的指数是从0到5,系数一次为1,﹣5,10,﹣10,5,﹣1,得出答案即可.13、1【分析】先化简,然后依据也是正整数可得到问题的答案.【详解】解:==,∵是正整数,∴1n为完全平方数,

∴n的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.14、6或1【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=1,P、C重合.【详解】解:①当AP=CB时,

∵∠C=∠QAP=90°,

在Rt△ABC与Rt△QPA中,,

∴Rt△ABC≌Rt△QPA(HL),

即;

②当P运动到与C点重合时,AP=AC,

在Rt△ABC与Rt△QPA中,

,∴Rt△QAP≌Rt△BCA(HL),

即,

∴当点P与点C重合时,△ABC才能和△APQ全等.

综上所述,AP=6或1.

故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15、75°【分析】根据已知条件设,然后根据三角形的内角和定理列方程即可得到结果.【详解】∵在△ABC中,∴设故答案为:.【点睛】本题考查了三角形的内角和定理,熟记定理是解题关键.16、BE【解析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC-∠BAD=∠DAE-∠BAD,∴∠DAC=∠BAE,∵在△CAD和△BAE中,,∴△CAD≌△BAE,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.17、【解析】18、【分析】由AD=BD得∠DAB=∠DBA,再由三角形外角的性质得∠CDB=2x°;由BD=BC得∠C=∠CDB=2x°;最后由三角形内角和求出∠ABC的值.【详解】∵AD=BD,∴∠DAB=∠DBA,∵∠A=x°∴∠CDB=∠DAB+∠DBA=2x°;∵BD=BC,∴∠C=∠CDB=2x°;在△ABC中,∠A+∠C+∠ABC=180°∴∠ABC=180°-∠A-∠C=(180-x)°.故答案为:(180-3x).【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理,熟练掌握性质和定理是解题的关键.三、解答题(共66分)19、证明见解析【解析】试题分析:由CA平分∠BCD,AE⊥BC于E,AF⊥CD,可得AE=AF,再由HL判定Rt△AEB≌Rt△AFD,即可得出结论.试题解析:∵CA平分∠BCD,AE⊥BC,AF⊥CD,∴AE=AF.在Rt△ABE和Rt△ADF中,∵∴△ABE≌△ADF(HL).20、是直角三角形.【分析】原等式的左边利用分组分解法分解因式即得a、b、c满足的关系式,然后利用勾股定理的逆定理进行判断即可.【详解】解:∵,∴,∴,∵a、b、c是△ABC的三边,∴,∴,即,∴∠C=90°,是直角三角形.【点睛】本题考查了多项式的因式分解和勾股定理的逆定理,属于常考题型,熟练掌握分解因式的方法和勾股定理的逆定理是解题关键.21、(1)见解析;(2)见解析【分析】(1)根据中位线的性质及平行线的性质即可求解;(2)连接,取的中点,连接,根据中位线的性质证明为等边三角形,再根据得到,得到,即可求解.【详解】解:(1)∵分别是的中点,∴,,.∴,,.∵,∴,∴,∴.(2)连接,取的中点,连接.∵,,H分别是,BD的中点∴,,.∴,,.∵,∴,∴,∴,∵,∴为等边三角形.∴,∵,∴,∴,∴.【点睛】该题以三角形为载体,以考查三角形的中位线定理、等腰三角形的判定等重要几何知识点为核心构造而成;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.22、见解析【分析】根据等边三角形的性质可得∠ABD=∠CBE=60°,AB=BD,BE=BC,根据角的和差关系可得∠ABE=∠DBC,利用SAS即可证明△ABE≌△DBC,可得AE=DC.【详解】∵△ABD和△BCE都是等边三角形,∴∠ABD=∠CBE=60°,AB=BD,BE=BC,∴∠ABD+∠DBE=∠CBE+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中,∴△ABE≌△DBC(SAS),∴AE=DC.【点睛】本题考查等边三角形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.23、(1)AD=BE.(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB≌△ACD即可.(3)由(2)得到∠CEB=∠CAD,此为解题的关键性结论,借助内角和定理即可解决问题.【详解】解:(1)∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为AD=BE.(2)AD=BE成立.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴BE=AD.(3))∠APE不随着∠ACB的大小发生变化,始终是60°.如图2,设BE与AC交于Q,由(2)可知△ECB≌△ACD,∴∠BEC=∠DAC又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.24、(1)1;(2)800个,图形见解析;(3);(4)见解析.【分析】(1)用C品牌的销售量除以它所占的百分比即可得销售这三种品牌粽子总个数;(2)B品牌的销售量=总销售量−1200−400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论