版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区昌平区第二中学2025届八年级数学第一学期期末达标测试试题达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知,下列结论:①;②;③;④;⑤;⑥;⑦.其中正确的有()A.个 B.个 C.个 D.个2.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm3.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为()A. B. C. D.4.平面直角坐标系中,点P(-3,4)关于轴对称的点的坐标为()A.(3,4) B.(-3,-4) C.(-3,4) D.(3,-4)5.是下列哪个二元一次方程的解()A. B. C. D.6.下列计算结果为的是()A. B. C. D.7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. C.4-2 D.3-48.如图,已知,那么添加下列一个条件后,仍无法判定的是()A. B. C. D.9.如果分式的值为0,那么x的值是()A.x=3 B.x=±3 C.x≠-3 D.x=-310.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD11.的平方根与-8的立方根之和是()A.0 B.-4 C.4 D.0或-412.下列运算正确的是()A.a3+a3=a3 B.a•a3=a3 C.(a3)2=a6 D.(ab)3=ab3二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,长方形的边,分别在轴,轴上,点在边上,将该长方形沿折叠,点恰好落在边上的点处,若,,则所在直线的表达式为__________.14.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).15.规定,若,则x的值是_____.16.在学习平方根的过程中,同学们总结出:在中,已知底数和指数,求幂的运算是乘方运算:已知幂和指数,求底数的运算是开方运算.小明提出一个问题:“如果已知底数和幕,求指数是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小明课后借助网络查到了对数的定义:小明根据对数的定义,尝试进行了下列探究:∵,∴;∵,∴;∵,∴;∵,∴;计算:________.17.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.三、解答题(共78分)19.(8分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.20.(8分)请在右边的平面直角坐标系中描出以下三点:、、并回答如下问题:在平面直角坐标系中画出△ABC;在平面直角坐标系中画出△A′B′C′;使它与关于x轴对称,并写出点C′的坐标______;判断△ABC的形状,并说明理由.21.(8分)如图,中,,点在上,点在上,于点于点,且.求证:.22.(10分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.23.(10分)在平面直角坐标系中,点是一次函数图象上一点.(1)求点的坐标.(2)当时,求的取值范围.24.(10分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.25.(12分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.26.已知在平面直角坐标系中的位置如图所示,将向右平移5个单位长度,再向下平移3个单位长度得到.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的;(2)直接写出各顶点的坐标______,______,______.(3)在轴上找到一点,当取最小值时,点的坐标是______.
参考答案一、选择题(每题4分,共48分)1、C【分析】利用得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵∴故①正确;②∵∴即:,故②正确;③∵∴;∴即:,故③正确;④∵∴;∴,故④正确;⑤∵∴,故⑤正确;⑥根据已知条件不能证得,故⑥错误;⑦∵∴;∴,故⑦正确;故①②③④⑤⑦,正确的6个.故选C.【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.2、C【解析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.3、D【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=x,
∴AD=DC=x,
∵△ABC是等边三角形,
∴BC=AC=2x,BD⊥AC,
在Rt△BDC中,由勾股定理得:故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.4、B【分析】根据点关于坐标轴对称的特点,即可得到答案.【详解】解:∵关于x轴对称,则横坐标不变,纵坐标变为相反数,∴点P()关于x轴对称的点坐标为:(),故选:B.【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握点关于坐标轴对称的特点,从而进行解题.5、D【分析】把分别代入每个方程进行验证得出结论.【详解】把分别代入每个方程得:A:,所以不是此方程的解;B:,所以不是此方程的解;C:,所以不是此方程的解;D:,所以是此方程的解.故选:D.【点睛】此题考查二元一次方程的解,解题关键在于代入选项进行验证即可.6、C【解析】根据幂的运算法则分别判断各选项是否正确即可解答.【详解】解:,故A错误;,故B错误;,故C正确;,故D错误;故选:C.【点睛】本题考查了幂的运算法则,准确计算是解题的关键.7、C【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再根据∠DAE=67.5°,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后根据勾股定理求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠DAE=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.8、C【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中
∵AB=AD,AC=AC,A、添加,根据,能判定,故A选项不符合题意;B、添加,根据能判定,故B选项不符合题意;C.添加时,不能判定,故C选项符合题意;D、添加,根据,能判定,故D选项不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.9、A【分析】直接利用分式的值为零则分子为零、分母不为零进而得出答案.【详解】∵分式的值为1,∴且,
解得:.
故选:A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.10、A【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11、D【解析】首先计算的平方根、-8的立方根,然后求和即可.【详解】∵=4,∴的平方根为2,∵-8的立方根为-2,∴的平方根与-8的立方根之和是0或-4,故选D.【点睛】本题考查平方根与立方根,一个正数的平方根有两个,它们互为相反数,0的平方根是0,熟练掌握平方根与立方根的概念是解题关键.12、C【解析】根据幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法的运算法则,逐项判断即可.【详解】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=a6,∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.【点睛】本题考查幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法,正确掌握相关运算法则是解题关键.二、填空题(每题4分,共24分)13、【分析】设CE=a,根据勾股定理可以得到CE、OF的长度,再根据点E在第二象限,从而可以得到点E的坐标.然后利用待定系数法求出AE所在直线的解析式.【详解】解:设CE=a,则BE=8-a,由折叠的性质可得:EF=BE=8-a,AB=AF
∵∠ECF=90°,CF=4,
∴a2+42=(8-a)2,
解得,a=3,
∴OE=3设OF=b,则OC=AB=AF=4+b
∵∠ACF=90°,OA=8,∴b2+82=(b+4)2,∴b=6,∴OF=6∴OC=CF+OF=10,
∴点E的坐标为(-10,3),设AE所在直线的解析式为y=kx+b(k≠0).将E(-10,3),A(0,8)代入y=kx+b得,解得∴AE所在直线的解析式为:故答案为:【点睛】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,待定系数法求一次函数的解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、<【解析】方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则故答案为:<【点睛】本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.15、【分析】根据题中的新定义化简所求式子,计算即可求出的值.【详解】∵,根据题意得到分式方程:,
整理,得:,解得:,经检验,是分式方程的解,
故答案是:.【点睛】本题考查了解分式方程,弄清题中的新定义是解本题的关键.注意解分式方程需检验.16、6【分析】根据已知条件中给出的对数与乘方之间的关系求解可得;【详解】解:∵,∴;故答案为:6【点睛】本题主要考查数字的变化规律,解题的关键是弄清对数与乘方之间的关系,并熟练运用.17、a>b【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.18、.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=2,CN=3,∴MN2=22+32,∴MN=考点:2.正方形的性质;2.全等三角形的判定与性质.三、解答题(共78分)19、32°【分析】设∠1=∠2=x,根据三角形外角的性质可得∠4=∠3=2x,在△ABC中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x的值,即可求得∠4、∠3的度数,在△ADC中,根据三角形的内角和定理求得∠DAC的度数即可.【详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x,在△ABC中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°.在△ADC中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.20、(1)见解析;(2);(3)为直角三角形,理由见解析【解析】根据A、B、C三点位置,再连接即可;首先确定A、B、C三点关于x轴对称点坐标,再确定位置,然后连接即可;首先计算出AB、AC、BC的长,再利用勾股定理逆定理进行判定即可.【详解】解:如图所示:△ABC即为所求;如图所示:即为所求,;为直角三角形;理由:,,,,,是直角三角形.故答案为:(1)见解析;(2);(3)为直角三角形,理由见解析.【点睛】此题主要考查了作图--轴对称变换,以及勾股定理和勾股定理逆定理,关键是正确确定点的位置,掌握如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.21、见解析【分析】根据三角形内角和相等得到∠1=∠B,再由∠1=∠2得出∠2=∠B,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【详解】解:如图,∵EF⊥AB,DG⊥BC,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【点睛】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B,通过∠1、∠2与∠B的关系推出结论.22、(1)如图射线BD即为所求;见解析;(2)AC=1.【解析】(1)利用尺规作出∠ABC的平分线交AC于点D;(2)只要证明BD=AD,求出BD即可解决问题.【详解】(1)如图射线BD即为所求;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,∵BD平分∠ABC,∴∠A=∠ABD=∠DBC=30°,∴BD=2CD=4,∴AD=4,∴AC=AD+CD=4+2=1.【点睛】本题考查基本作图,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1);(2)【分析】(1)把点代入一次函数中求出m的值,即可求出P点坐标;(2)分别求出当时,当时,所对的y值,然后写出范围即可.【详解】(1)解:∵图象经过点,∴,解得:,∴点的坐标为.(2)对于,当时,,当时,,∵,∴函数值随的增大而减小,∴.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数和不等式知识是解决本题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44746-2024粮油机械刮板输送机
- 2024数控机床主轴可靠性加工过程的可靠性技术规范
- 《国际贸易学》大学题集
- 文书模板-无废城市建设总结报告
- 小区物业管理服务方案
- 沙糖桔种植的果园成本费用核算-记账实操
- 2024年四川省资阳市中考英语试题(含答案)
- 第7课《溜索》教学设计-2023-2024学年统编版语文九年级下册
- 2024年电调收音机项目资金申请报告代可行性研究报告
- 货物代理合作协议书(3篇)
- 大学生创业英语智慧树知到期末考试答案章节答案2024年广西师范大学
- 燃气流量计体积修正仪校准规范
- 大班语言课《石头小猪》教案设计
- 肿瘤物理消融规范化培训考试题
- 采购管理制度设计方案毕业设计(2篇)
- 收银审核员考试:收银员试题及答案(三)
- DG-TJ08-2413-2023 优.秀历史建筑外墙修缮技术标准
- 家用光伏发电储能装置的设计
- 2024-2029全球及中国客户服务BPO行业市场发展分析及前景趋势与投资发展研究报告
- 某污水处理设备质量保证措施
- 艺术与体育的研究报告
评论
0/150
提交评论