2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题含解析_第1页
2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题含解析_第2页
2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题含解析_第3页
2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题含解析_第4页
2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省绍兴越城区五校联考数学八年级第一学期期末考试模拟试题试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点关于轴对称的点为()A. B. C. D.2.如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B.C. D.3.如果把分式中的、的值都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍 B.缩小为原来的一半C.扩大为原来的4倍 D.保持不变4.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)5.如图,平分,于点,于点,,则图中全等三角形的对数是()

A.1对 B.2对 C.3对 D.4对6.下列计算正确的是()A.x2•x4=x8 B.x6÷x3=x2C.2a2+3a3=5a5 D.(2x3)2=4x67.如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是()A. B. C. D.8.已知直线,若,则此直线的大致图像可能是()A. B. C. D.9.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处10.如图所示,在中,,是中线,,,垂足分别为,则下列四个结论中:①上任一点与上任一点到的距离相等;②;③;④;⑤正确的有()A.2个 B.3个 C.4个 D.5个11.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个 B.2个 C.3个 D.4个12.下列图形中,是轴对称图形且只有三条对称轴的是()A. B. C. D.二、填空题(每题4分,共24分)13.在,,,,这五个数中,无理数有________个.14.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为__________

.

15.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是_________.16.下图所示的网格是正方形网格,________.(填“”,“”或“”)17.不等式组的解集为__________18.等腰三角形的一个内角是,则它的底角的度数为_________________.三、解答题(共78分)19.(8分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为xkm,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?20.(8分)如图,四边形ABCD中,,对角线AC,BD相交于点O,,垂足分别是E、F,求证:.21.(8分)平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.22.(10分)分解因式:(1);(2)23.(10分)计算+++24.(10分)(1)计算:;(2)分解因式:.25.(12分)如图,△ABC和△DEF中,AB=DE,∠B=∠DEF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.26.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?

参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【详解】点P(−2,3)关于x轴对称的点的坐标为(−2,−3).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.2、C【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【详解】A.∵,∴,即,∵在和中,,∴,∴,故A选项正确;B.∵,∴,∴,则,故B选项正确;C.∵,∴只有当时,才成立,故C选项错误;D.∵为等腰直角三角形,∴,∴,∵,∴,∴,故D选项正确,故选:C.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.3、D【分析】根据分式的基本性质,求得x,y的值均扩大为原来的2倍式子的值,与原式比较即可求解.【详解】把分式中的、的值都扩大为原来的2倍,可得,;∴把分式中的、的值都扩大为原来的2倍,分式的值不变.故选D.【点睛】本题考查了分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.4、A【解析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.5、C【分析】根据SAS,HL,AAS分别证明,,,即可得到答案.【详解】∵平分,∴∠AOP=∠BOP,∵,OP=OP,∴(SAS)∴AP=BP,∵平分,∴PE=PF,∵于点,于点,∴(HL),∵平分,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴(AAS).故选C.【点睛】本题主要考查三角形全等的判定定理,掌握SAS,HL,AAS证明三角形全等,是解题的关键.6、D【分析】根据同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【详解】解:A.应为x2•x4=x6,故本选项错误;B.应为x6÷x3=x3,故本选项错误;C.2a2与3a3不是同类项,不能合并,故本选项错误;D.(2x3)2=4x6,正确.故选:D.【点睛】本题考查合并同类项,同底数幂的乘法和除法、积的乘方,熟练掌握运算法则是解题的关键.注意掌握合并同类项时,不是同类项的一定不能合并.7、B【解析】根据等腰三角形的性质得到根据垂直的性质得到根据等量代换得到又即可得到根据同角的余角相等即可得到.【详解】,,从而是等腰三角形,,故选:B.【点睛】考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.8、B【分析】根据一次函数解析式系数k,b的几何意义,逐一判断选项,即可.【详解】图A中,k>0,b>0,kb>0,不符合题意,图B中,k>0,b<0,kb<0,符合题意,图C中,k<0,b<0,kb>0,不符合题意,图D中,k<0,b=0,kb=0,不符合题意,故选B.【点睛】本题主要考查一次函数的系数k,b的几何意义,掌握k,b的正负性与一次函数图象的位置关系是解题的关键.9、A【分析】利用角平分线性质定理即可得出答案.【详解】角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以应建在三个内角平分线的交点上.故选A.考点:角平分线的性质10、B【分析】根据等腰三角形三线合一的性质可以判断①、③错误,②、④正确,根据与都是直角三角形,以及可以判断⑤正确.【详解】解:,是中线,,(等腰三角形的三线合一),到和的距离相等,,①、③错误,②、④正确,与都是直角三角形,,,..⑤正确.故选:B.【点睛】本题考查了等腰三角形的性质,直角三角形的性质及角平分线的性质,熟记性质并且灵活运用是本题解题关键.11、D【分析】根据周角的定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【详解】根据题意,,,,正确;根据题意可得四边形ABCD是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC⊥AB,③正确,所以四个命题都正确,故选D.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.12、C【解析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.【详解】解:A、不是轴对称图形;B、是轴对称图形,有2条对称轴;C、是轴对称图形,有3条对称轴;D、是轴对称图形,有4条对称轴;故选:C.【点睛】掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.二、填空题(每题4分,共24分)13、【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在,,,,这五个数中,无理数有,这两个数,【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14、7.5【解析】试题解析:根据题意,阴影部分的面积为三角形面积的一半,

阴影部分面积为:故答案为:15、30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC、BD=BC得∠ABC=∠ACB、∠C=∠BDC,在△ABC中,∠A=40°,∠C=∠ABC,∴∠C=∠ABC=(180°−∠A)=(180°−40°)=70°;在△ABD中,由∠BDC=∠A+∠ABD得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角16、>【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.17、【分析】由题意分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集即可.【详解】解:,解得,所以不等式组的解集为:.故答案为:.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础以及熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.三、解答题(共78分)19、(1);(2)铁路运输节省总运费.【解析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【详解】(1)解:根据题意得:即(2)当x=120时,∵∴铁路运输节省总运费【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型.20、证明见解析.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【详解】在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21、(1)(2);图见解析.【分析】(1)根据点坐标关于y轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以”可得点坐标,再在平面直角坐标系中描出三点,然后顺次连接即可得.【详解】(1)在平面直角坐标系中,点坐标关于y轴对称的规律为:横坐标变为相反数,纵坐标不变故答案为:;;;(2)横坐标不变,纵坐标都乘以在平面直角坐标系中,先描出三点,再顺次连接即可得,结果如图所示:【点睛】本题考查了点坐标关于y轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.22、(1);(2).【分析】(1)根据平方差公式分解即可;(2)先提取公因式,再利用完全平方公式分解.【详解】解:(1);(2).【点睛】本题考查了多项式的因式分解,属于基础题型,熟练掌握分解因式的方法是解题关键.23、11【分析】根据幂的乘方,零指数幂,负整数指数幂,绝对值的性质,进行计算即可.【详解】+(π++=4+1+3+3=11【点睛】此题考查幂的乘方,零指数幂,负整数指数幂,绝对值的性质,解题关键在于掌握运算法则.24、(1);(2).【分析】(1)先计算积的乘方和同底数幂相乘,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论