版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省龙岩市金丰片区八年级数学第一学期期末达标测试试题试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2802.下列运算结果正确的是()A. B.C. D.3.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列各式中是完全平方式的是()A. B. C. D.5.下列命题中,逆命题是真命题的是()A.全等三角形的对应角相等; B.同旁内角互补,两直线平行;C.对顶角相等; D.如果,那么6.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B. C.3 D.77.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=-1的解为()A.1 B.2 C.1或2 D.1或-28.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x-2
B.90x-2=60x+2
9.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标()A.(﹣2,0) B.(﹣2,2) C.(2,0) D.(5,1)10.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°° B.255° C.155° D.150°11.如图,甲、乙、丙、丁四位同学给出了四种表示大长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的有()A.①② B.③④ C.①②③ D.①②③④12.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.观察下列各式:;;;……根据前面各式的规律可得到________.14.已知点P(2m+4,m﹣1)在x轴上,点P1与点P关于y轴对称,那么点P1的坐标是_____.15.如图,四边形中,,垂足为,则的度数为____.16.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果出售后,最后的600千克按原售价的7折售完,超市两次销售这种干果共盈利________元.17.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是_____.18.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.三、解答题(共78分)19.(8分)如图1,在等腰直角三角形中,,点在边上,连接,连接(1)求证:(2)点关于直线的对称点为,连接①补全图形并证明②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形20.(8分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.21.(8分)如图,在中,点是边的中点,,,.求证:.22.(10分)如图,,点在上.(1)求证:平分;(2)求证:.23.(10分)在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.(1)求m,n的值;(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.24.(10分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.25.(12分)阅读与思考:整式乘法与因式分解是方向相反的变形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2﹣x﹣6分解因式.这个式子的常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),这个过程可用十字相乘的形式形象地表示:先分解常数项,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数.如图所示.这种分解二次三项式的方法叫“十字相乘法”,请同学们认真观察,分析理解后,解答下列问题.(1)分解因式:x2+7x﹣1.(2)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.26.已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).
参考答案一、选择题(每题4分,共48分)1、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.2、C【分析】分别根据完全平方公式、合并同类项的法则、单项式乘多项式以及同底数幂的除法法则逐一判断即可.【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误;故选C.【点睛】本题主要考察整式的加减、完全平方公式和同底数幂的除法,解题关键是熟练掌握计算法则.3、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、既是轴对称图形,也是中心对称图形,故此选项正确;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,不是中心对称图形,故此选项错误.
故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【分析】根据完全平方公式a2±2ab+b2=(a±b)2进行分析,即可判断.【详解】解:,是完全平方公式,A正确;其余选项不能配成完全平方形式,故不正确
故选:A.【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型.5、B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C选项不符合题意;D.如果,那么的逆命题为如果,那么是假命题,所以D选项不符合题意.故选:B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6、D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【点睛】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.7、B【分析】分类讨论与的大小,列出分式方程,解方程即可.【详解】解:当时,x<0,方程变形为,去分母得:2=3-x,
解得:x=1(不符合题意,舍去);
当,,x>0,方程变形得:,去分母得:1=3-x,
解得:x=2,
经检验x=2是分式方程的解,
故选:B.【点睛】此题考查了解分式方程,分类讨论是解本题的关键.8、A【解析】未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.【详解】顺流所用的时间为:90x+2;逆流所用的时间为:60x-2.所列方程为:90x+2【点睛】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.9、C【分析】根据点A的平移规律,求出点C′的坐标即可.【详解】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.【点睛】本题考查平移变换,坐标与图形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.11、D【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;
②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【详解】①(2a+b)(m+n),本选项正确;
②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点睛】此题考查了整式乘法,灵活计算面积是解本题的关键.12、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、-1【分析】根据题目中的规律可看出,公式左边的第一项为(x-1),公式左边的第二项为x的n次幂开始降次排序,系数都为1,公式右边为-1即可.【详解】由题目中的规律可以得出,-1,故答案为:-1.【点睛】本题考查了整式乘除相关的规律探究,掌握题目中的规律探究是解题的关键.14、(﹣6,0)【分析】依据点P(2m+4,m﹣1)在x轴上,即可得到m=1,进而得出P(6,0),再根据点P1与点P关于y轴对称,即可得到点P1的坐标是(﹣6,0).【详解】解:∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,∴m=1,∴P(6,0),又∵点P1与点P关于y轴对称,∴点P1的坐标是(﹣6,0),故答案为:(﹣6,0).【点睛】本题主要考查了轴上点的坐标性质以及关于轴对称的点坐标性质,得出的值是解题关键.15、45°【解析】由题意利用四边形内角和为360°以及邻补角的定义进行分析即可得出的度数.【详解】解:∵四边形中,,,∴,∴.故答案为:45°.【点睛】本题考查四边形内角和定理,利用四边形内角和为360°以及邻补角的定义进行求解是解题的关键.16、2【分析】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,即可得出关于x的分式方程,解之即可得出x的值,进而即可求出第一、二次购进干果的数量,再利用利润=销售收入﹣成本即可得出结论.【详解】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据题意得:2300,解得:x=5,经检验,x=5是原方程的解.当x=5时,600,1.1×9+600×9×0.7﹣3000﹣9000=2(元).故超市两次销售这种干果共盈利2元.故答案为:2.【点睛】本题考查了分式方程的应用,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,列出关于x的分式方程是解答本题的关键.17、1【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S△ABC=S△BOC+S△AOB+S△AOC===×22×3=1.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.18、27【解析】∵BE⊥AC,AD=CD,
∴AB=CB,即△ABC为等腰三角形,
∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,
在△ABD和△CED中,,∴△ABD≌△CED(SAS),
∴∠E=∠ABE=27°.
故答案是:27.三、解答题(共78分)19、(1)证明见解析;(2)①见解析;②画图见解析,.【分析】(1)先根据同角的余角相等推出∠BAD=∠CAE,再根据SAS证得△BAD≌△CAE,进而可得结论;(2)①根据题意作图即可补全图形;利用轴对称的性质可得ME=AE,CM=CA,然后根据SSS可推出△CME≌△CAE,再利用全等三角形的性质和(1)题的∠BAD=∠CAE即可证得结论;②当三点恰好共线时,设AC、DM交于点H,如图3,由前面两题的结论和等腰直角三角形的性质可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的内角和可得∠HAE=∠HDC,进而可得,接着在△CDM中利用三角形的内角和定理求出∠CMD的度数,再利用①的结论即得答案.【详解】解:(1)证明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠BAD=∠CAE,又∵BA=CA,DA=EA,∴△BAD≌△CAE(SAS),∴;(2)①补全图形如图2所示,∵点关于直线的对称点为,∴ME=AE,CM=CA,∵CE=CE,∴△CME≌△CAE(SSS),∴,∵∠BAD=∠CAE,∴;②当三点恰好共线时,设AC、DM交于点H,如图3,由(1)题知:,∵△CME≌△CAE,∴,∴∠DCM=135°,在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,∵,∴,∴,∵,∴.【点睛】本题考查了依题意作图、等腰直角三角形的性质、轴对称的性质、全等三角形的判定和性质以及三角形的内角和定理等知识,综合性较强,熟练掌握上述知识是解题关键.20、证明见解析【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【详解】∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.【点睛】考点:1.等边三角形的性质;2.三角形内角和定理;3.等腰三角形的判定与性质.21、见解析【分析】在△ABD中根据勾股定理的逆定理得到∠ADB=90°,从而得到AD是BC的垂直平分线,根据垂直平分线上的点到线段两个端点的距离相等即可得到结论.【详解】∵点D是BC边的中点,BC=12,∴BD=1.∵AD=8,AB=10,∴在ABD中,,∴ABD是直角三角形,∠ADB=90°,∴AD⊥BC.∵点D是BC边的中点,∴AD是BC的垂直平分线,∴AB=AC.【点睛】本题考查了勾股定理的逆定理以及线段垂直平分线的性质.求出∠ADB=90°是解答本题的关键.22、(1)见解析;(2)见解析.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;
(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【详解】解:(1)在与中,∴∴即平分;(2)由(1)在与中,得∴∴【点睛】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.23、(1)m=1,n=1;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR=;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【详解】解:(1)∵,又∵≥0,|1﹣m|≥0,∴n﹣1=0,1﹣m=0,∴m=1,n=1.(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=41°,∴∠QCN+∠OCP=90°﹣41°=41°,∴∠ECP=∠ECO+∠OCP=41°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,∵∠SDG=131°,∴∠SDH=180°﹣131°=41°,∴∠FCE=∠SDH=41°,∴∠NCE+∠OCF=41°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=41°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=1,FC=,由勾股定理得:OF==,∴FM=1﹣=,设EN=x,则EM=1﹣x,FE=E′F=x+,则(x+)2=()2+(1﹣x)2,解得:x=,∴EN=,由勾股定理得:CE==,∴SR=CE=.故答案为.(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA(AAS),∴DN=AN,∴DN=AD,∴MN=DM+DN=DF+AD=AF,∵OF=OA=1,OC=3,∴CF=,∴BF=BC﹣CF=1﹣4=1,∴AF=,∴MN=AF=,∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【点睛】本题是四边形与动点问题的综合题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高安市九年级上学期语文期中考试卷
- 二年级数学计算题专项练习集锦
- 脱硫废水零排放技术协议书(2篇)
- 高中技术学业水平测试试卷
- 南京工业大学浦江学院《食品标准与法规》2022-2023学年第一学期期末试卷
- 翰林国际(原曹妃甸科教城共享居住及配套)土地固化施工组织设计
- 多种多样的生态系统说课稿
- gkh说课稿第课时
- 《小数的性质》说课稿
- 租地合同范本(2篇)
- 苹果商店所有地区价格和等级表
- 【参考】华为腾讯职位管理0506
- 五年级英语上册Unit1Getupontime!教案陕旅版
- 风机安装工程质量通病及预防措施
- 三角形钢管悬挑斜撑脚手架计算书
- 剪纸教学课件53489.ppt
- 旅游业与公共关系PPT课件
- 劳动法讲解PPT-定稿..完整版
- 彩色的翅膀_《彩色的翅膀》课堂实录
- 假如你爱我的正谱
- 铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆检测报告可修改
评论
0/150
提交评论