2025届湖南邵阳县数学八上期末调研试题含解析_第1页
2025届湖南邵阳县数学八上期末调研试题含解析_第2页
2025届湖南邵阳县数学八上期末调研试题含解析_第3页
2025届湖南邵阳县数学八上期末调研试题含解析_第4页
2025届湖南邵阳县数学八上期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南邵阳县数学八上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若分式,则的值为()A.1 B.2 C.3 D.42.4的算术平方根是()A.-2 B.2 C. D.3.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.5.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°6.若分式中的变为原来的倍,则分式的值()A.变为原来的倍 B.变为原来的倍 C.变为原来的 D.不变7.是()A.分数 B.整数 C.有理数 D.无理数8.已知=6,=3,则的值为()A.9 B. C.12 D.9.下列命题中,是假命题的是()A.同旁内角互补 B.对顶角相等C.两点确定一条直线 D.全等三角形的面积相等10.用不等式表示如图的解集,其中正确的是()A. B.x≥2 C. D.x≤211.如图,在中,,,则的度数为()A. B. C. D.12.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间二、填空题(每题4分,共24分)13.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.14.如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当______时,四边形ABEC是矩形.15.化简:=_______________.16.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是.17.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是__cm.18.等腰三角形ABC的顶角为120°,腰长为20,则底边上的高AD的长为_____.三、解答题(共78分)19.(8分)先化简式子:÷(a+2﹣),再从3,2,0三个数中选一个恰当的数作为a的值代入求值.20.(8分)如图,在四边形中,,是的中点,连接并延长交的延长线于点,点在边上,且.(1)求证:≌.(2)连接,判断与的位置关系并说明理由.21.(8分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:,比如指数式可以转化为,对数式可以转化为,我们根据对数的定义可得到对数的一个性质:),理由如下:设则∴,由对数的定义得又∵,所以,解决以下问题:(1)将指数转化为对数式____;计算___;(2)求证:(3)拓展运用:计算22.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.23.(10分)如图,在平面直角坐标系中,A(-1,2),B(1,1),C(-4,-1).

(1)在图中作出关于轴对称的.(2)写出的坐标(直接写答案),,.24.(10分)如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.25.(12分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.(1)若∠A=∠AOC,试说明:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.26.有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?

参考答案一、选择题(每题4分,共48分)1、D【分析】首先将已知分式通分,得出,代入所求分式,即可得解.【详解】∵∴∴∴=故选:D.【点睛】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.2、B【解析】试题分析:因,根据算术平方根的定义即可得4的算术平方根是1.故答案选B.考点:算术平方根的定义.3、B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.4、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【点睛】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.5、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.6、C【分析】直接将题目中的、根据要求,乘以2计算再整理即可.【详解】解:依题意可得所以分式的值变为原来的故选:C.【点睛】本题考查的是分式的值的变化,这里依据题意给到的条件,代入认真计算即可.7、D【解析】先化简,进而判断即可.【详解】,故此数为无理数,故选:D.【点睛】本题主要考查无理数的定义和二次根式的化简,正确将二次根式化简得出是解题关键.8、C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵xm=6,xn=3,

∴x2m-n=(xm)2÷xn=62÷3=1.

故选:C.【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(xm)2÷xn是解题的关键.9、A【分析】逐一对选项进行分析即可.【详解】A选项,两直线平行,同旁内角互补,故该命题是假命题;B选项,对顶角相等,故该命题是真命题;C选项,两点确定一条直线,故该命题是真命题;D选项,全等三角形的面积相等,故该命题是真命题.故选:A.【点睛】本题主要考查真假命题,会判断命题的真假是解题的关键.10、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D.11、B【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=40°∴∠B=(180°-∠BAD)=(180°-40°)=70°∵AD=DC∴∠C=CAD在△ABC中,∠BAC+∠B+∠C=180°即40°+∠C+∠C+70°=180°解得:∠C=35°故选:B【点睛】本题主要考查等腰三角形的性质:等角三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.12、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【详解】解:∵∴,,∴,即,∴的值在3和4之间.故选:C.【点睛】本题主要考查无理数的估算,掌握无理数的估算方法是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.14、1【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【详解】解:当∠AFC=1∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=1∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为1.【点睛】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.15、3【分析】根据分数指数幂的定义化简即可.【详解】解:故答案为:3【点睛】本题主要考查了分数指数幂的意义,熟知分数指数幂意义是解题关键.16、1.【分析】作DE⊥AB,根据角平分线性质可得:DE=CD=1.【详解】如图,作DE⊥AB,因为∠C=90°,AD是∠BAC的平分线,CD=1,所以,DE=CD=1.即:D到AB边的距离是1.故答案为1【点睛】本题考核知识点:角平分线性质.解题关键点:利用角平分线性质求线段长度.17、1【解析】根据题意,过A点和B点的平面展开图分三种情况,再根据两点之间线段最短和勾股定理可以分别求得三种情况下的最短路线,然后比较大小,即可得到A点到B点的最短路线,本题得以解决.【详解】解:由题意可得,

当展开前面和右面时,最短路线长是:当展开前面和上面时,最短路线长是:当展开左面和上面时,最短路线长是:∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是1cm,

故答案为:1.【点睛】本题主要考查的就是长方体的展开图和勾股定理的实际应用问题.解决这个问题的关键就是如何将长方体进行展开.在解答这种问题的时候我们需要根据不同的方式来对长方体进行展开,然后根据两点之间线段最短的性质通过勾股定理来求出距离.有的题目是在圆锥中求最短距离,我们也需要将圆锥进行展开得出扇形,然后根据三角形的性质进行求值.18、1【分析】画出图形,结合条件可求得该三角形的底角为30°,再结合直角三角形的性质可求得底边上的高.【详解】解:如图所示:∵∠BAC=120°,AB=AC,∴,∴Rt△ABD中,,即底边上的高为1,故答案为:1.【点睛】本题考查了含30度角的直角三角形的性质:30度角所对的直角边是斜边的一半.三、解答题(共78分)19、,【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a的值代入计算即可.【详解】解:÷(a+2﹣)=÷(﹣)=÷=•=∵a≠±3且a≠2,∴a=0.则原式=.【点睛】本题主要考查了分式的化简求值,先把分式化简,再把分式中未知数对应的值代入求出分式的值.关键是掌握在化简过程中的运算顺序和法则,注意运算的结果要化成最简分式或整式.20、(1)见解析;(2),见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)EG⊥DF,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,∴DG=FG,由(1)得:△ADE≌△BFE∴DE=FE,即GE为DF上的中线,又∵DG=FG,∴EG⊥DF.【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.21、(1),3;(2)证明见解析;(3)1【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(M•N)=logaM+logaN和=logaM−logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,∴==am−n,由对数的定义得m−n=,又∵m−n=logaM−logaN,∴=logaM−logaN(a>0,a≠1,M>0,N>0);(3)log32+log36−log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.22、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件【解析】试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;(2)把月销售额320件与大部分员工的工资比较即可判断.(1)平均数件,∵最中间的数据为210,∴这组数据的中位数为210件,∵210是这组数据中出现次数最多的数据,∴众数为210件;(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.考点:本题考查的是平均数、众数和中位数点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.23、(1)见解析;(2),,【分析】(1)作出关于轴对称的对称点,顺次连接起来,即可;(2)根据坐标系中的的位置,即可得到答案.【详解】(1)如图所示:(2)根据坐标系中的,可得:,,,故答案是:,,.

【点睛】本题主要考查平面直角坐标系中图形的轴对称变换以及点的坐标,画出原三角形各个顶点关于y轴的对称点,是解题的关键.24、(1)证明见解析;(2)证明见解析.【分析】(1)根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAB=60,根据全等三角形的判定定理即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAB=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB(SAS);(2)由(1)知∠CDA=∠EBA,如图∠1=∠2,∴180°﹣∠CDA﹣∠1=180°﹣∠EBA﹣∠2,∴∠DAB=∠DFB=60°,如图,延长FB至K,使FK=DF,连DK,∴△DFK为等边三角形,∴DK=DF,∴△DBK≌△DAF(SAS),∴BK=AF,∴DF=DK,FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【点睛】本题考查了全等三角形的判定和性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论