2025届江苏省南通市如东县八年级数学第一学期期末监测试题含解析_第1页
2025届江苏省南通市如东县八年级数学第一学期期末监测试题含解析_第2页
2025届江苏省南通市如东县八年级数学第一学期期末监测试题含解析_第3页
2025届江苏省南通市如东县八年级数学第一学期期末监测试题含解析_第4页
2025届江苏省南通市如东县八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南通市如东县八年级数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在下列长度的各组线段中,能组成三角形的是()A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,92.下列各分式中,是最简分式的是().A. B. C. D.3.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.若是完全平方式,则的值为()A. B. C. D.5.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是6.已知,点在内部,点与点关于对称,点与点关于对称,则是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形7.下列四个交通标志中,轴对称图形是()A. B. C. D.8.如图,直线l1、l2的交点坐标可以看作方程组()的解.A. B.C. D.9.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C. D.4或10.如图,函数y=ax+b和y=kx的图像交于点P,关于x,y的方程组的解是()A. B. C. D.11.如下书写的四个汉字,其中为轴对称图形的是()A. B. C. D.12.把分解因式,结果正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.14.甲、乙两种商品原来的单价和为元,因市场变化,甲商品降价,乙商品提价,调价后两种商品的单价和比原来的单价和提高了,求甲、乙两种商品原来的单价.现设甲商品原来的单价元,乙商品原来的单价为元,根据题意可列方程组为_____________;15.27的相反数的立方根是.16.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.17.若,,,则的大小关系用“<”号排列为_________.18.在等腰直角三角形ABC中,,在BC边上截取BD=BA,作的平分线与AD相交于点P,连接PC,若的面积为10cm2,则的面积为___________.三、解答题(共78分)19.(8分)“天生雾、雾生露、露生耳”,银耳是一种名贵食材,富含人体所需的多种氨基酸和微量元素,具有极高的药用价值和食用价值.某银耳培育基地的银耳成熟了,需要采摘和烘焙.现准备承包给甲和乙两支专业采摘队,若承包给甲队,预计12天才能完成,为了减小银耳因气候变化等原因带来的损失,现决定由甲、乙两队同时采摘,则可以提前8天完成任务.(1)若单独由乙队采摘,需要几天才能完成?(2)若本次一共采摘了300吨新鲜银耳,急需在9天内进行烘焙技术处理.已知甲、乙两队每日烘焙量相当,甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工.若甲、乙两队从采摘到加工,每日工资分别是600元和1000元.问:银耳培育基地此次需要支付给采摘队的总工资是多少?20.(8分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?21.(8分)某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?22.(10分)如图,在中,,,平分,延长至,使,连接.求证:≌23.(10分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.24.(10分)两块等腰直角三角尺与(不全等)如图(1)放置,则有结论:①②;若把三角尺绕着点逆时针旋转一定的角度后,如图(2)所示,判断结论:①②是否都还成立?若成立请给出证明,若不成立请说明理由.25.(12分)如图,在中,,,点是边上的动点(点与点、不重合),过点作交射线于点,联结,点是的中点,过点、作直线,交于点,联结、.(1)当点在边上,设,.①写出关于的函数关系式及定义域;②判断的形状,并给出证明;(2)如果,求的长.26.先化简,再求值:,其中x=1.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据三角形的三边关系:两边之和大于第三边对各项逐一判断A选项,1+2<4;故不能组成三角形B选项,1+4<9;故不能组成三角形C选项,3+4>5;故可以组成三角形D选项,4+5=9;故不能组成三角形故选C考点:三角形的三边关系点评:此题主要考查学生对应用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定三条线段能构成一个三角形2、A【分析】根据定义进行判断即可.【详解】解:A、分子、分母不含公因式,是最简分式;B、==x-y,能约分,不是最简分式;C、==,能约分,不是最简分式;D、=,能约分,不是最简分式.故选A.【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.3、B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.4、D【解析】根据完全平方公式进行计算即可.【详解】解:,∴m=∴m=故选:D【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.5、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数6、C【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.【详解】如图,

∵P,P1关于直线OA对称,P、P2关于直线OB对称,

∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,

∵∠AOB=30°,

∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,

∴△P1OP2是等边三角形.

故选C.【点睛】考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.7、C【解析】根据轴对称图形的定义:沿一条直线折叠后直线两边的部分能互相重合,进行判断即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误,故选C.【点睛】本题考查了轴对称图形,关键是能根据轴对称图形的定义判断一个图形是否是轴对称图形.8、A【分析】首先利用待定系数法求出l1、l2的解析式,然后可得方程组.【详解】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴,解得:,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴,解得:,∴l2的解析式为y=x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组的解.故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.9、D【解析】试题解析:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=1.故选D.10、D【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.11、B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.12、C【解析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】==,故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.二、填空题(每题4分,共24分)13、【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.【详解】设,其中为整数,,则,,原方程化为:,.,即,,为整数,、.当时,,此时,为非零实数,舍去;当时,此时.故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.14、【分析】根据“甲、乙两种商品原来的单价和为1元”可得出方程为x+y=1.根据“甲商品降价10%,乙商品提价40%,调价后两种商品的单价之和比原来的单价和提高了20%”,可得出方程为,联立即可列出方程组.【详解】解:根据题意可列方程组:,故答案为:.【点睛】本题考查二元一次方程组的应用.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15、-1【分析】先根据相反数的定义得到27的相反数,再开立方,可得到答案.【详解】27的相反数是﹣27,﹣27的立方根是﹣1.故答案为:﹣1.【点睛】本题考查了实数的性质,熟练掌握相反数的定义和利用立方根是解答本题的关键.16、1【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;

(a+b)4的第三项系数为6=1+2+3;

(a+b)5的第三项系数为10=1+2+3+4;∴(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),

∴第三项系数为1+2+3+…+7=1,

故答案为:1.【点睛】本题考查数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.17、a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a2=2000+2,b2=2000+2,c2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.

∴a<b<c.故答案为:a<b<c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.18、5cm1【分析】根据等腰三角形底边上的三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【详解】∵BD=BA,BP是∠ABC的平分线,

∴AP=PD,

∴S△BPD=S△ABD,S△CPD=S△ACD,

∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,

∵△ABC的面积为10cm1,

∴S△BPC=×10=5(cm1).

故答案为:5cm1.【点睛】本题考查了等腰三角形底边上的三线合一的性质,三角形的面积的运用,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.三、解答题(共78分)19、(1)乙队单独需要6天才能完成;(2)银耳培育基地此次需要支付给采摘队的总工资14200元【分析】(1)设乙队单独需要天才能完成,根据题意列出分式方程即可求解;(2)根据甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工可列出分式方程求出x,即可得到总工资.【详解】解:(1)设乙队单独需要天才能完成,根据题意可有:解得经检验,是原方程的解∴单独由乙队采摘,需要6天才能完成;(2)根据题意有:解得经检验,是原方程的解∴甲加工了3天,乙加工了6天∴总费用为:元答:乙队单独需要6天才能完成任务;银耳培育基地此次需要支付给采摘队的总工资14200元.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列出方程求解.20、(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1元【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.21、(1)5元笔记本买了25本,8元笔记本买了15本(2)不可能找回68元,理由见解析.【解析】(1)设5元、8元的笔记本分别买本,本,依题意,得:,解得:.答:5元和8元笔记本分别买了25本和15本.(2)设买本5元的笔记本,则买本8元的笔记本.依题意,得:,解得.因是正整数,所以不合题意,应舍去,故不能找回68元.【点睛】本题难度较低,主要考查学生对二元一次方程组解决实际应用的能力。为中考常考题型,要求学生牢固掌握。22、见解析【分析】根据已知条件可得AE=2AC,然后根据30°所对的直角边是斜边的一半可得AB=2AC,从而得出AB=AE,然后根据角平分线的定义可得∠BAD=∠EAD,最后利用SAS即可证出结论.【详解】证明:∵∴AE=CE+AC=2AC在Rt△ABC中,,∴AB=2AC∴AB=AE∵平分,∴∠BAD=∠EAD在和中∴≌(SAS)【点睛】此题考查的是全等三角形的判定和直角三角形的性质,掌握利用SAS判定两个三角形全等和30°所对的直角边是斜边的一半是解决此题的关键.23、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.【点睛】本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.24、①AC=BD②AC⊥BD都还成立,理由见解析【分析】利用全等三角形的判定方法(SAS)得出△ACO≌△BDO,进而得出AC=BD,再利用三角形内角和定理得出AC⊥BD.【详解】解:①AC=BD②AC⊥BD都

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论