版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市丰台区第十二中学2025届数学八年级第一学期期末经典模拟试题模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y32.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm3.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1 B.a2+4 C.a2+2a+1 D.a2﹣4a﹣44.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.5.已知+c2﹣6c+9=0,则以a,c为边的等腰三角形的周长是()A.8 B.7 C.8或7 D.136.下列各因式分解中,结论正确的是()A.B.C.D.7.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间8.一个多边形的每一个外角都等于36,则该多边形的内角和等于()A.1080° B.900° C.1440° D.720°9.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④10.下列命题是真命题的是()A.直角三角形中两个锐角互补 B.相等的角是对顶角C.同旁内角互补,两直线平行 D.若,则11.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°12.若关于的分式方程无解,则的值是()A.3 B. C.9 D.二、填空题(每题4分,共24分)13.分解因式:mx2﹣4m=_____.14.在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长1.8cm.写出弹簧长度L(cm)与所挂物体质量x(kg)之间的函数表达式.15.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.16.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.17.若关于和的二元一次方程组,满足,那么的取值范围是_____.18.如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是__.三、解答题(共78分)19.(8分)已知.求作:,使(1)如图1,以点为圆心,任意长为半径画弧,分别交,于点,;(2)如图2,画一条射线,以点为圆心,长为半径画弧,交于点;(3)以点为圆心,长为半径画弧,与第2步中所画的弧交于点;(4)过点画射线,则.根据以上作图步骤,请你证明.20.(8分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____;如图①,于,求的长度;如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数的点(保留痕迹).21.(8分)计算:;22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:根据图示信息,整理分析数据如下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(说明:图中虚线部分的间隔距离均相等)(1)求出表格中的值;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.23.(10分)某校八年级全体同学参加了爱心捐款活动,该校随机抽查了部分同学捐款的情况统计如图:(1)求出本次抽查的学生人数,并将条形统计图补充完整;(2)捐款金额的众数是___________元,中位数是_____________;(3)请估计全校八年级1000名学生,捐款20元的有多少人?24.(10分)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.25.(12分)若∠1=∠2,∠A=∠D,求证:AB=DC26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
参考答案一、选择题(每题4分,共48分)1、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.2、C【解析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.3、C【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A.
不符合完全平方公式法分解因式的式子特点,故错误;B.
不符合完全平方公式法分解因式的式子特点,故错误;C.符合完全平方公式法分解因式的式子特点,故正确;D.,不符合完全平方公式法分解因式的式子特点,故错误.故选C.【点睛】本题考查因式分解-运用公式法.4、A【分析】根据材料中公式将1,2,代入计算即可.【详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【点睛】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.5、C【分析】根据非负数的性质列式求出a、c的值,再分a是腰长与底边两种情况讨论求解.【详解】解:可化为:,∵,,∴,,解得a=2,c=3,①a=2是腰长时,三角形的三边分别为2、2、3,∵2+2=4>3,∴2、2、3能组成三角形,∴三角形的周长为7,②a=2是底边时,三角形的三边分别为2、3、3,能够组成三角形,∴三角形的周长为1;综上所述,三角形的周长为7或1.故选:C.【点睛】本题考查了非负数的性质和等腰三角形的性质,解题的关键是分情况讨论并利用三角形的三边关系进行判断.6、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.7、D【解析】直接得出接近的有理数,进而得出答案.【详解】∵<<,
∴8<<9,
∴在8与9之间.
故选:D.【点睛】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.8、C【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故选C.9、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【详解】解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵BD平分∠ABC,∠ABC=∠ACB,
∵∠ABC+∠ACB+∠BAC=180°,
当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;
∵∠ADB=∠ABD,
∴AD=AB,
∴AD=AC,故④正确;
故选:B.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.10、C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A、直角三角形中两个锐角互余,故此选项错误;
B、相等的角不一定是对顶角,故此选项错误;
C、同旁内角互补,两直线平行,正确;
D、若|a|=|b|,则a=±b,故此选项错误;
故选C.【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.11、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.12、D【分析】根据分式方程的增根是使最简公分母为零的值,可得关于m的方程,根据解方程,可得答案.【详解】解:方程去分母得:,整理得:,∴,∵方程无解,∴,解得:m=-9.故选D.【点睛】本题考查了分式方程的解,利用分式方程的增根得出关于m的方程是解题关键.二、填空题(每题4分,共24分)13、m(x+2)(x﹣2)【解析】提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14、L=2.6x+3.【详解】解:设弹簧总长度L(cm)与所挂物体质量x(kg)之间符合一次函数关系为L=kx+3.由题意得1.8=3k+3,解得k=2.6,所以该一次函数解析式为L=2.6x+3.考点:根据实际问题列一次函数关系式.15、36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.16、【解析】根据题意作E关于AD的对称点M,连接CM交AD于P,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CP+EP=CM,根据垂线段最短得出CP+EP≥,即可得出答案.【详解】作E关于AD的对称点M,连接CM交AD于P,连接EP,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN==,∵E关于AD的对称点M,∴EP=PM,∴CP+EP=CP+PM=CM,根据垂线段最短得出:CM≥CN,即CP+EP≥,即CP+EP的最小值是,故答案为.【点睛】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性.17、m>−1【分析】两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.【详解】解:,①+②得:3x+3y=3m+3,则x+y=m+1,∵,∴m+1>0,解得:m>−1,故答案为:m>−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x+y=m+1是解题的关键.18、1.【分析】根据正数的两个平方根互为相反数列方程求出m,再求出3m+4,然后平方计算即可得解.【详解】解:根据题意知3m+4+2﹣m=0,解得:m=﹣3,所以这个数为(3m+4)2=(﹣5)2=1,故答案为1.【点睛】本题主要考查了平方根的定义.解题的关键是明确一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共78分)19、证明过程见解析.【分析】由基本作图得到,,根据“SSS”可证明,然后根据全等三角形的性质得到.【详解】由题意得,,在和中,,∴,∴故.【点睛】本题考察了三角形全等的判定方法:SSS,根据同弧所在圆的半径相等得到两组对边相等,并且同弧所对弦相等得到另一种对边相等,熟练掌握不同三角形全等的判定条件是解决本题的关键.20、;;.数轴上画出表示数−的B点.见解析.【分析】(1)根据勾股定理计算;(2)根据勾股定理求出AD,根据题意求出BD;(3)根据勾股定理计算即可.【详解】∵这一个直角三角形的两条直角边分别为∴这个直角三角形斜边长为故答案为:∵∴在中,,则由勾股定理得,在和中∴∴(3)点A在数轴上表示的数是:,由勾股定理得,以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,故答案为:,B点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.21、8x+29【分析】先乘除去括号,再加减;主要环节是根据乘法公式展开括号.【详解】解:原式==【点睛】本题考查了整式的混合运算,主要涉及了乘法公式,灵活利用完全平方公式及平方差公式进行计算是解题的关键.22、(1)a=85,b=80,c=85;(2)初中部成绩较好;(3)初中代表队的方差为70,高中代表队的方差为160,初中代表队选手成绩较为稳定【分析】(1)直接利用中位数、平均数、众数的定义分别分析求出答案;
(2)利用平均数以及中位数的定义分析得出答案;
(3)利用方差的定义得出答案.【详解】解:(1)填表:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩较好,因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩较好.(3)∵,,∴s12<s22,因此初中代表队选手成绩较为稳定.【点睛】此题主要考查了平均数、众数、方差、中位数的定义和性质,正确把握相关定义是解题关键.23、(1)50人,条形图见详解;(2)10,12.5;(3)140人.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;(3)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.【详解】解:(1)本次抽查的学生有:14
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学合作研究协议书5篇
- 牛头包船课程设计
- 海报插图课程设计
- 十四五大数据产业发展规划
- 2024有关消防演练活动总结(34篇)
- 美术微课程设计与制作
- 幼儿园美食实践课程设计
- 康复科护士的工作体会
- 有趣的音乐游戏课程设计
- 《当代资本主义的新》课件
- 当前国际形势
- 湘贺水利枢纽水电站设计
- 高压线防护架搭设施工方案
- 四川省成都市2021-2022学年高一(上)期末调研考试物理试题Word版含解析
- 二次元作业指导书
- GB/T 15180-2010重交通道路石油沥青
- 公路工程质量与安全管理课件
- 计算机基础知识整理课件
- 高一数学必修2《事件的关系和运算》课件
- 四年级道德与法治试卷分析范文(通用5篇)
- 封条模板A4直接打印版
评论
0/150
提交评论