版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计学—基于SPSS课程内容描述统计、推断统计、其他常用方法使用软件SPSS学分与课时3学分,1~17周,每周3课时第5章参数估计5.1
参数估计的基本原理5.2
总体均值的区间估计5.3
总体比例的区间估计5.4总体方差的区间估计5.4样本量的确定parameterestimation2019-5-5学习目标参数估计的基本原理点估计与区间估计评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法总体方差的区间估计方法样本量的确定方法2019-5-5问题与思考
科学家做出重大贡献时的最佳年龄是多少科学家在哪个年龄段易取得重大突破?有研究表明:杰出科学家做出重大贡献的最佳年龄区在25~45岁之间,其最佳峰值年龄和首次贡献的最佳成名年龄随着时代的变化而逐渐增大。伟大的科学发现很多是由富于创造力的年轻人所提出的。下表是16世纪中叶至20世纪的12个重大科学突破的资料5.1参数估计的基本原理
5.1.1点估计与区间估计
5.1.2评价估计量的标准第5章参数估计5.1.1点估计与区间估计5.1参数估计的基本原理2019-5-5参数估计(parameterestimation)就是用样本统计量去估计总体的参数估计量:用于估计总体参数的统计量的名称如样本均值,样本比例,样本方差等例如:样本均值就是总体均值
的一个估计量参数用
表示,估计量用表示估计值:估计参数时计算出来的统计量的具体值如果样本均值
x=80,则80就是
的估计值估计量与估计值
(estimator&estimatedvalue)2019-5-5点估计
(pointestimate)用样本的估计量的某个取值直接作为总体参数的估计值例如:用样本均值直接作为总体均值的估计;用两个样本均值之差直接作为总体均值之差的估计无法给出估计值接近总体参数程度的信息由于样本是随机的,抽出一个具体的样本得到的估计值很可能不同于总体真值一个点估计量的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点估计值无法给出估计的可靠性的度量2019-5-5区间估计
(intervalestimate)在点估计的基础上,给出总体参数估计的一个估计区间,该区间由样本统计量加减估计误差而得到根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率度量比如,某班级平均分数在75~85之间,置信水平是95%
2019-5-5区间估计的图示2019-5-5将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例,也称置信度表示为(1-
为是总体参数未在区间内的比例常用的置信水平值有99%,95%,90%相应的为0.01,0.05,0.10置信水平
(confidencelevel)
2019-5-5由样本估计量构造出的总体参数在一定置信水平下的估计区间统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间如果用某种方法构造的所有区间中有95%的区间包含总体参数的真值,5%的区间不包含总体参数的真值,那么,用该方法构造的区间称为置信水平为95%的置信区间。同样,其他置信水平的区间也可以用类似的方式进行表述置信区间的表述
(confidenceinterval)2019-5-5总体参数的真值是固定的,而用样本构造的区间则是不固定的,因此置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数实际估计时往往只抽取一个样本,此时所构造的是与该样本相联系的一定置信水平(比如95%)下的置信区间。我们只能希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个置信区间的表述
(confidenceinterval)2019-5-5当抽取了一个具体的样本,用该样本所构造的区间是一个特定的常数区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值,因为它可能是包含总体均值的区间中的一个,也可能是未包含总体均值的那一个一个特定的区间总是“包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题置信水平只是告诉我们在多次估计得到的区间中大概有多少个区间包含了参数的真值,而不是针对所抽取的这个样本所构建的区间而言的置信区间的表述
(confidenceinterval)2019-5-5置信区间的表述
(95%的置信区间)重复构造出的的100个置信区间2019-5-5使用一个较大的置信水平会得到一个比较宽的置信区间,而使用一个较大的样本则会得到一个较准确(较窄)的区间。直观地说,较宽的区间会有更大的可能性包含参数但实际应用中,过宽的区间往往没有实际意义比如,天气预报说“在一年内会下一场雨”,虽然这很有把握,但有什么意义呢?另一方面,要求过于准确(过窄)的区间同样不一定有意义,因为过窄的区间虽然看上去很准确,但把握性就会降低,除非无限制增加样本量,而现实中样本量总是有限的区间估计总是要给结论留点儿余地置信区间的表述
(confidenceinterval)5.1.2评价估计量的标准5.1参数估计的基本原理2019-5-5无偏性
(unbiasedness)无偏性:估计量抽样分布的数学期望等于被估计的总体参数2019-5-5有效性
(efficiency)有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效
2019-5-5一致性
(consistency)一致性:随着样本量的增大,估计量的值越来越接近被估计的总体参数5.2总体均值的区间估计
5.2.1一个总体均值的区间估计
5.2.2两个总体均值之差的区间估计第5章参数估计5.2.1一个总体均值的区间估计5.2总体均值的区间估计2019-5-5一个总体均值区间的一般表达式总体均值的置信区间是由样本均值加减估计误差得到的估计误差由两部分组成:一是点估计量的标准误差,它取决于样本统计量的抽样分布。二是估计时所要的求置信水平为时,统计量分布两侧面积为的分位数值,它取决于事先所要求的可靠程度总体均值在置信水平下的置信区间可一般性地表达为样本均值±分位数值×样本均值的标准误差2019-5-5总体均值的区间估计
(大样本的估计)1. 假定条件总体服从正态分布,且方差(
2)
已知如果不是正态分布,可由正态分布来近似(n
30)使用正态分布统计量z总体均值
在1-
置信水平下的置信区间为2019-5-5总体均值的区间估计
(大样本的估计)【例5-1】一家保险公司收集到由36个投保人组成的随机样本,得到每个投保人的年龄(单位:周岁)数据如下表。试建立投保人年龄90%的置信区间
36个投保人年龄的数据2335392736443642464331334253455447243428393644403949383448503439454845322019-5-5总体均值的区间估计
(大样本的估计)解:已知n=36,1-
=90%,z
/2=1.645。根据样本数据计算得:,
总体均值
在1-
置信水平下的置信区间为投保人平均年龄的置信区间为37.4岁~41.6岁2019-5-5总体均值的区间估计
(小样本的估计)1. 假定条件总体服从正态分布,但方差(
2)
未知小样本(n<30)使用t
分布统计量总体均值
在1-
置信水平下的置信区间为2019-5-5总体均值的区间估计
(小样本的估计)【例5-2】一家食品生产企业以生产袋装食品为主,为对产量质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布,且总体标准差为10克。试估计该批产品平均重量的置信区间,置信水平为95%25袋食品的重量112.5101.0103.0102.0100.5102.6107.595.0108.8115.6100.0123.5102.0101.6102.2116.695.497.8108.6105.0136.8102.8101.598.493.32019-5-5总体均值的区间估计
(小样本的估计)解:已知X~N(
,102),n=25,1-
=95%,t
/2=2.0639。根据样本数据计算得:。由于是正态总体,且方差已知。总体均值
在1-
置信水平下的置信区间为该食品平均重量的置信区间为101.375克~109.345克2019-5-5用SPSS求置信区间
(小样本)
求置信区间SPSS5.2.2两个总体均值之差的区间估计5.2总体均值的区间估计2019-5-5均值之差区间的一般表达式两个总体均值的置信区间是由两个样本均值之差加减估计误差得到的估计误差由两部分组成:一是点估计量的标准误差,它取决于样本统计量的抽样分布。二是估计时所要的求置信水平为时,统计量分布两侧面积为的分位数值,它取决于事先所要求的可靠程度两个总体均值之差(
1-
2)在置信水平下的置信区间可一般性地表达为(
x1-
x2)±分位数值×(
x1-
x2)的标准误差2019-5-5两个总体均值之差的估计
(独立大样本)1. 假定条件两个总体都服从正态分布,
12、
22已知若不是正态分布,可以用正态分布来近似(n1
30和n2
30)两个样本是独立的随机样本使用正态分布统计量z2019-5-5两个总体均值之差的估计
(独立大样本)1.
12,
22已知时,两个总体均值之差
1-
2在1-
置信水平下的置信区间为
12、
22未知时,两个总体均值之差
1-
2在1-
置信水平下的置信区间为2019-5-5两个总体均值之差的估计
(独立大样本)【例5-3】某地区教育管理部门想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立地抽取两个随机样本,有关数据如表5—4所示。建立两所中学高考英语平均分数之差95%的置信区间2019-5-5两个总体均值之差的估计
(独立大样本)解:两个总体均值之差在1-
置信水平下的置信区间为两所中学高考英语平均分数之差的置信区间为5.03分~10.97分2019-5-5两个总体均值之差的估计
(独立小样本:
12=
22)1. 假定条件两个总体都服从正态分布两个总体方差未知但相等:
12=
22两个独立的小样本(n1<30和n2<30)总体方差的合并估计量估计量
x1-x2的抽样标准差2019-5-5两个总体均值之差的估计
(独立小样本:
12=
22)两个样本均值之差的标准化两个总体均值之差
1-
2在1-
置信水平下的置信区间为2019-5-5两个总体均值之差的估计
(独立小样本:
12
22)1. 假定条件两个总体都服从正态分布两个总体方差未知且不相等:
12
22两个独立的小样本(n1<30和n2<30)使用统计量2019-5-5两个总体均值之差的估计
(独立小样本:
12
22)
两个总体均值之差
1-
2在1-
置信水平下的置信区间为自由度2019-5-5两个总体均值之差的估计
(独立小样本:
12=
22)2019-5-5用SPSS求两个总体均值之差置信区间
(独立小样本,
12=
22
;
12
22)求置信区间SPSS2019-5-5两个总体均值之差的估计
(配对大样本)假定条件两个配对的大样本(n1
30和n2
30)两个总体各观察值的配对差服从正态分布两个总体均值之差
d=
1-
2在1-
置信水平下的置信区间为
d±分位数值×
d的标准误差2019-5-5两个总体均值之差的估计
(匹配小样本)假定条件两个匹配的小样本(n1<30和n2<30)两个总体各观察值的配对差服从正态分布
两个总体均值之差
d=
1-
2在1-
置信水平下的置信区间为2019-5-5两个总体均值之差的估计
(匹配小样本)【例5-5】由10名学生组成一个随机样本,让他们分别采用A和B两套试卷进行测试,结果如表5—7所示。假定两套试卷分数之差服从正态分布,试建立两种试卷平均分数之差
d=
1-
2
95%的置信区间5.3总体比例的区间估计
5.3.1一个总体比例的区间估计
5.3.2两个总体比例之差的区间估计第5章参数估计5.3.1一个总体比例的区间估计5.3总体比例的区间估计2019-5-5一个总体比例的区间估计
(传统方法)1. 假定条件总体服从二项分布可以由正态分布来近似np(成功次数)和n(1-p)(失败次数)均应该大于10使用正态分布统计量z3.总体比例
在1-
置信水平下的置信区间为样本比例±分位数值×样本比例的标准误差2019-5-5总体比例的区间估计
(例题分析—传统方法)【例5-6】某城市想要进行一项交通措施改革,为征求市民对该项改革措施的意见,在成年人中随机调查了500个市民,其中325人赞成改革措施。用95%的置信水平估计该城市成年人口中赞成该项改革的人数比例的置信区间即(60.82%,69.18%),该城市人口中赞成该项改革的比例95%的置信区间为60.82%~69.18%2019-5-5一个总体比例的区间估计
(改进方法)按照传统方法计算出来的置信水平为(1-
)的置信区间能够覆盖总体真实比例的概率小于(1-
),既是大样本也是如此,更不可能应用于小样本根据经验法则:传统方法要求np(成功次数)和n(1-p)(失败次数)均应该大于10(也有些书上说大于5)对于非常大的样本,传统方法和改进方法的结果几乎相同,但对于小样本或中等样本改进方法更适用2019-5-5一个总体比例的区间估计
(改进方法)通过修正试验次数n(样本量)和试验成功的比例P(样本比例)改进置信区间将试验次数n加上4,即用代替n;将试验成功的次数x加上2,即用代替p对于任意大小的样本都可以使用该方法计算置信区间只是在样本较小时,偶尔会有区间下限小于0或区间上限大于1的情况发生。此时可用0代替小于0的下限,用1代替大于1的上限2019-5-5一个总体比例的区间估计
(改进方法)设总体服从二项分布,即X~(n,p),x为n次独立伯努利试验成功的次数,P为成功的概率定义和总体比例在1-
置信水平下的置信区间该区间也称为Agresti-Coull区间(由AlanAgresti和BrentCoull给出,以其姓氏命名)如果下限小于0则用0代替;如果上限大于1则用1代替2019-5-5总体比例的区间估计
(例题分析—改进方法)【例5-7】某城市想要进行一项交通措施改革,为征求市民对该项改革措施的意见,在成年人中随机调查了500个市民,其中325人赞成改革措施。用95%的置信水平估计该城市成年人口中赞成该项改革的人数比例的置信区间即(60.71%,69.05%),该城市成年人口中赞成该项改革的人数比例95%的置信区间为60.71%~69.05%5.3.2两个总体比例之差的区间估计5.3总体比例的区间估计2019-5-51. 假定条件两个总体服从二项分布可以用正态分布来近似两个样本是独立的n1p1和n1(1-p1),n2p2和n2(1-p2),均应该大于102. 两个总体比例之差
1-
2在1-
置信水平下的置信区间为两个总体比例之差的区间估计
(传统方法)(p1-p2)±分位数值×(p1-p2)的标准误差2019-5-5两个总体比例之差的区间估计
(改进方法)通过修正试验次数n1、n2(样本量)和试验成功的比例P1、P2(样本比例)改进置信区间将试验次数n1和n1各加上2,即用代n1,代替n2;将试验成功的次数x1和x2各加上1,即用代替p1,用代替p2对于任意大小的样本都可以使用该方法计算置信区间2019-5-5两个总体比例之差的区间估计
(改进方法)设两总体都服从二项分布,即X1~(n1,p1),X2~(n2,p2)。x1为n1次独立伯努利试验成功的次数,P1为成功的概率,x2
为n2次独立伯努利试验成功的次数,P2为成功的概率定义,;,
1-2在1-
置信水平下的置信区间该区间也称为Agresti-Caffo区间(由AlanAgresti和BrianCaffo给出,以其姓氏命名)如果下限小于-1则用-1代替;如果上限大于1则用1代替2019-5-5两个总体比例之差的估计
(例题分析—传统方法)【例5—8、9】在某个电视节目的收视率调查中,女性观众随机调查了500人,有225人收看了该节目;男性观众随机调查了400人,有128人收看了该节目。用95%的置信水平估计女性与男性收视率差值的置信区间5.4总体方差的区间估计
5.4.1一个总体方差的区间估计
5.4.2两个总体方差比的区间估计第5章参数估计5.4.1一个总体方差的区间估计5.4总体方差的区间估计2019-5-5一个总体方差的区间估计1. 估计一个总体的方差或标准差2. 假设总体服从正态分布总体方差
2
的点估计量为s2,且4.总体方差在1-
置信水平下的置信区间为
2019-5-5总体方差的区间估计
(图示)2019-5-5总体方差的区间估计
(例题分析)【例5-10】一家食品生产企业以生产袋装食品为主,现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布。以95%的置信水平建立该种食品重量方差的置信区间
25袋食品的重量112.5101.0103.0102.0100.5102.6107.595.0108.8115.6100.0123.5102.0101.6102.2116.695.497.8108.6105.0136.8102.8101.598.493.32019-5-5总体方差的区间估计
(例题分析)解:已知n=25,1-
=95%,根据样本数据计算得
s2=93.21
2置信度为95%的置信区间为该企业生产的食品总体重量标准差的的置信区间为7.54g~13.43g5.4.2两个总体方差比的区间估计5.4总体方差的区间估计2019-5-5两个总体方差比的区间估计1. 比较两个总体的方差比用两个样本的方差比来判断如果S12/S22接近于1,说明两个总体方差很接近如果S12/S22远离1,说明两个总体方差之间存在差异总体方差比在1-
置信水平下的置信区间为
2019-5-5两个总体方差比的区间估计
(图示)2019-5-5两个总体方差比的区间估计
(例题分析)5.5样本量的确定
5.5.1估计总体均值时样本量的确定
5.5.2估计总体比例时样本量的确定第5章参数估计6.5.1估计总体均值时样本量的确定6.5样本量的确定2019-5-5估计总体均值时样本量n为样本量n与总体方差
2、边际误差E、可靠性系数Z或t之间的关系为与总体方差成正比与边际误差的平方成反比与可靠性系数成正比样本量的圆整法则:当计算出的样本量不是整数时,将小数点后面的数值一律进位成整数,如24.68取25,24.32也取25等等估计一个总体均值时样本量的确定其中:2019-5-5估计一个总体均值时样本量的确定
(例题分析)【例5-12】拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计年薪95%的置信区间,希望边际误差为400元,应抽取多大的样本量?2019-5-5估计一个总体均值时样本量的确定
(例题分析)解:已知
=2000,E=400,1-
=95%,z/2=1.96
应抽取的样本量为即应抽取97人作为样本2019-5-5估计两个总体均值之差时
样本量的确定设n1和n2为来自两个总体的样本,并假定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务员月工作总结范文样本
- LED显示屏安装与运营合作协议范本
- 2024年春季教学参考:《曾子杀猪》课件深度分析
- 2024年个人汽车交易协议样本
- 2024年度建筑项目协议副本指南
- 2024教师招聘教师资格考试面试试讲稿小学数学五(下)分数的意义
- 农村土地意向合作合同模板
- 2024年企业间信用借款协议范本
- 2024年信用贷款协议书示例文稿
- 2024年协议主体替换协议文件
- 2024年全国职业院校技能大赛高职组(检验检疫技术赛项)考试题库(含答案)
- 和灯做朋友(教学设计)-2023-2024学年五年级上册综合实践活动蒙沪版
- 乐理知识考试题库130题(含答案)
- 人教版(2024)七年级地理上册2.2《地形图的判读》精美课件
- 2024年共青团入团积极分子团校结业考试试题库及答案
- 2024年辽宁高考历史试题(含答案和解析)
- 黄河商品交易市场介绍稿
- Unit 3 My friends Part C Story time(教学设计)-2024-2025学年人教PEP版英语四年级上册
- 2024中国海油校园招聘2024人(高频重点提升专题训练)共500题附带答案详解
- 孙中山诞辰纪念日主题班会主题班会
- 2024年安徽省合肥市中考语文题卷(含答案)
评论
0/150
提交评论