云南民族大学附属中学2025届数学八上期末学业水平测试试题含解析_第1页
云南民族大学附属中学2025届数学八上期末学业水平测试试题含解析_第2页
云南民族大学附属中学2025届数学八上期末学业水平测试试题含解析_第3页
云南民族大学附属中学2025届数学八上期末学业水平测试试题含解析_第4页
云南民族大学附属中学2025届数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南民族大学附属中学2025届数学八上期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若,则()A. B. C. D.2.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°4.如果边形的内角和是它外角和的倍,则等于()A. B. C. D.5.已知、、为的三边,、、为它的三个内角,下列条件不能判定是直角三角形的是()A. B.C. D.(为正整数)6.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34° B.36° C.38° D.68°7.如图,在中,,平分,过点作于点.若,则()A. B. C. D.8.如图,在四边形中,,,,,则四边形的面积是()A. B.C. D.9.满足下列条件时,不是直角三角形的是()A.,, B.C. D.10.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A. B.C. D.11.通过“第十四章整式的乘法与因式分解”的学习,我们知道:可以利用图形中面积的等量关系得到某些数学公式,如图,可以利用此图得到的数学公式是()A. B.C. D.12.计算的结果是(

).A.

B.

C. D.二、填空题(每题4分,共24分)13.已知的两条边长分别为4和8,第三边的长为,则的取值范围______.14.若点关于轴的对称点的坐标是,则的值是__________.15.计算:__________________.16.如图,如果你从点向西直走米后,向左转,转动的角度为°,再走米,再向左转40度,如此重复,最终你又回到点,则你一共走了__________米.17.若分式有意义,则__________.18.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.三、解答题(共78分)19.(8分)如图,,,,请你判断是否成立,并说明理由.20.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(8分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合).〖初步探究〗(1)点B的坐标为;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;〖深入探究〗(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;〖拓展应用〗(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为.23.(10分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.24.(10分)解不等式组,并求出它的整数解的和.25.(12分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.26.如图,在中,,,为的中点,、分别是、(或它们的延长线)上的动点,且.(1)当时,如图①,线段和线段的关系是:_________________;(2)当与不垂直时,如图②,(1)的结论还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)当、运动到、的延长线时,如图③,请直接写出、、之间的关系.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据不等式的性质逐一判断即可.【详解】解:A、当c为负数时,不成立,故A错误;B.、当m=0时,不成立,故B错误;C、由不能得出,故C错误;D、因为,所以,故D正确,故答案为:D.【点睛】本题考查了不等式的基本性质,解题的关键是熟知不等式的基本性质.2、C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.3、D【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4、C【分析】由题意先设这个多边形的边数为n,则依题意可列出方程(n-2)×180°=310°×2,从而解出n=1,即这个多边形的边数为1.【详解】解:设这个多边形的边数为n,则依题意可得:(n-2)×180°=310°×2,解得n=1.故选:C.【点睛】本题主要考查多边形的外角和定理和多边形的内角和定理,解题的关键是熟练掌握三角形的内角和定理即(n-2)×180°.注意任意多边形的外角和都是310°.5、C【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【详解】A.若a2=c2−b2,则△ABC为直角三角形,故本选项不合题意;B.若a=3,b=4,c=5,则△ABC为直角三角形,故本选项不合题意;C.若∠A:∠B:∠C=3:4:5,则最大角∠C<90°,△ABC不是直角三角形,故本选项符合题意;D.若a=5k,b=12k,c=13k(k为正整数),则a2+b2=c2,那么这个三角形就是直角三角形,故本选项不合题意.故选:C.【点睛】本题主要考查了勾股定理的逆定理,勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.6、A【分析】先根据角平分线的定义可得,再根据平行线的判定可得,然后根据平行线的性质即可得.【详解】平分,又故选:A.【点睛】本题考查了角平分线的定义、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.7、C【分析】先根据角平分线的性质,得出DE=DC,再根据DC=1,即可得到DE=1.【详解】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,

∴DE=DC,

∵DC=1,

∴DE=1,

故选:C.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.8、A【分析】如下图,连接AC,在Rt△ABC中先求得AC的长,从而可判断△ACD是直角三角形,从而求得△ABC和△ACD的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB⊥BC∴在Rt△ABC中,AC=,∵AD=,DC=2又∵∴三角形ADC是直角三角形∴∴四边形ABCD的面积=+2=故选:A.【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC是直角三角形,然后用勾股定理逆定理验证即可.9、C【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】A、符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;C、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C选项不是直角三角形,符合题意;D、根据三角形内角和定理,求得各角分别为90°,45°,45°,故D选项是直角三角形,不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10、C【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.11、B【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【详解】∵左上角正方形的面积,

左上角正方形的面积,还可以表示为,

∴利用此图得到的数学公式是.故选:B【点睛】本题考查的是根据面积推导乘法公式,灵活运用整体面积等于部分面积之和是解题的关键.12、D【解析】试题分析:积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.二、填空题(每题4分,共24分)13、4<<1【分析】根据三角形三边关系定理可得8-4<<8+4,进而求解即可.【详解】由题意,得8-4<<8+4,即4<<1.故答案为:4<<1.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.14、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.15、x1-y1【分析】根据平方差公式(a+b)(a-b)=a1-b1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【详解】x1-y1.故答案为:x1-y1.【点睛】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16、1.【分析】根据题意转动的角度为°,结合图我们可以知道,最后形成的正多边形的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【点睛】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键.17、≠【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x≠.故答案为:≠.【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.18、25°【解析】试题分析:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°.∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°.∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.三、解答题(共78分)19、成立,证明见解析【分析】先根据全等三角形的判定定理求出△AEB≌△AFC,根据全等三角形的性质定理得出AC=AB,求出∠AMB=∠ANC,根据全等三角形的判定定理推出即可.【详解】解:成立,理由如下:∵在△AEB和△AFC中,∴△AEB≌△AFC(AAS),∴AC=AB,∵∠C+∠CDM=∠AMB,∠B+∠BDN=∠ANC,∠C=∠B,∠CDM=∠BDN,∴∠AMB=∠ANC,在△ACN和△ABM中,∴△ACN≌△ABM(AAS).【点睛】本题考查了全等三角形的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.20、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,

∵△DEC是由△ABC绕点C旋转得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),

即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此时S△DCF1=S△BDE;

过点D作DF1⊥BD,

∵∠ABC=20°,F1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等边三角形,

∴DF1=DF1,过点D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,点D是角平分线上一点,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴点F1也是所求的点,

∵∠ABC=20°,点D是角平分线上一点,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的长为3或2.21、(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.22、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4).【分析】(1)作BD⊥x轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得∠BAP=∠OAC,再利用SAS可证得全等;(3)由(2)可知PB⊥AB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标.【详解】解:(1)∵A(0,2),∴OA=2,过点B作BD⊥x轴,∵△OAB为等边三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案为:;(2)证明:∵△OAB和ACP为等边三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上图,∵,∴∠ABP=∠AOC=90°,∴点P在过点B且与AB垂直的直线上.设直线AB的解析式为:,则,解得:,∴,∴设直线BP的解析式为:,则,解得,故;(4)设,∵OP=OB,∴,解得:,(舍去),故此时,,∵点A、C、P按逆时针方向排列,∴,故答案为:.【点睛】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质.解题的关键是正确寻找全等三角形解决问题.23、(1)见解析;(2)4.【分析】(1)根据CE⊥CD,∠ACB=90°得∠BCD=∠ACE,再根据AC=BC,CE=CD,即可证明△CBD≌△CAE(SAS);(2)通过△CBD≌△CAE(SAS)得出BD=AE,∠DAE=90°,根据勾股定理求出DE的长即可.【详解】(1)∵CE⊥CD,∠ACB=90°,∴∠DCE=∠ACB=90°,∴∠BCD=∠ACE,∵AC=BC,CE=CD,在△BCD与△ACE中,,∴△CBD≌△CAE(SAS).(2)∵△CBD≌△CAE,∴BD=AE,∠CBD=∠CAE=45°,∴∠DAE=90°,∴.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.24、1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的整数解即可.【详解】解不等式得:,解不等式得:,此不等式组的解集为,故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论