2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题含解析_第1页
2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题含解析_第2页
2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题含解析_第3页
2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题含解析_第4页
2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省福州市鳌峰八年级数学第一学期期末监测模拟试题题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④3.如图,AD是△ABC的中线,点E、F分别是射线AD上的两点,且DE=DF,则下列结论不正确的是()A.△BDF≌△CDE B.△ABD和△ACD面积相等C.BF∥CE D.AE=BF4.如图是根据某校学生的血型绘制的扇形统计图,该校血型为型的有人,那么该校血型为型的人数为()A. B. C. D.5.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形6.化简的结果为()A. B.5 C.-5 D.7.将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是()A. B. C. D.8.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90° B.180° C.210° D.270°9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数10.一个长方形的面积是,且长为,则这个长方形的宽为()A. B. C. D.11.点关于轴的对称点的坐标是()A.(2,-3) B.(-2,-3) C.(-2,3) D.(-3,2)12.下列各命题的逆命题是真命题的是A.对顶角相等 B.全等三角形的对应角相等C.相等的角是同位角 D.等边三角形的三个内角都相等二、填空题(每题4分,共24分)13.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为_____.14.一次函数的图象经过点,且函数y的值随自变量x的增大而增大,请写出一个符合条件的一次函数表达式_________________.15.若点P(2-a,2a-1)到x轴的距离是3,则点P的坐标是______.16.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边展开的系数与右边杨辉三角对应的数,则展开后最大的系数为_____17.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______.18.已知实数、在数轴上的位置如图所示,化简=_____________三、解答题(共78分)19.(8分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.20.(8分)如图,在平面直角坐标系xOy中,A(-1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1;(其中A1、B1、C1分别是A、B、C的对应点,不写画法.)(2)写出点A1、B1、C1的坐标;(3)求出△A1B1C1的面积.21.(8分)计算22.(10分)先化简,再求值:(1),其中x=﹣(2),其中x=﹣1.23.(10分)某射击队有甲、乙两名射手,他们各自射击次,射中靶的环数记录如下:甲:,,,,,,乙:,,,,,,(1)分别求出甲、乙两名射手打靶环数的平均数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?24.(10分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.25.(12分)金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?26.公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095若将阅读能力、思维能力和表达能力三项测试得分按1∶3∶1的比确定每人的最后成绩,谁将被录用?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】解:①是轴对称图形,故符合题意;②不是轴对称图形,故不符合题意;③是轴对称图形,故符合题意;④是轴对称图形,故符合题意.共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.2、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.3、D【解析】利用SAS判定△BDF≌△CDE,即可一一判断;【详解】解:∵AD是△ABC的中线,

∴BD=CD,

∴S△ABD=S△ADC,故B正确,

在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故A正确;

∴CE=BF,

∵△BDF≌△CDE(SAS),

∴∠F=∠DEC,

∴FB∥CE,故C正确;

故选D.【点睛】此题主要考查了全等三角形判定和性质,解题的关键是正确寻找全等三角形解决问题.4、B【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【解析】根据算数平方根的意义,若一个正数x的平方等于即,则这个正数x为的算术平方根.据此将二次根式进行化简即可.【详解】故选B【点睛】本题考查了二次根式的化简,解决本题的关键是熟练掌握算数平方根的意义.7、C【分析】根据平面直角坐标系中,点的平移与点的坐标之间的关系,即可得到答案.【详解】∵点向左平移3个长度单位,再向上平移2个长度单位得到点,∴点的坐标是(-5,-1),故选C.【点睛】本题主要考查平面直角坐标系中,点的平移与点的坐标之间的关系,掌握点的平移与点的坐标之间的关系,是解题的关键.8、C【分析】利用四边形内角和为360解决问题即可.【详解】解:∵∠A:∠B:∠C:∠D=1:4:2:5,∴∠C+∠D=360×=210,故选:C.【点睛】本题考查四边形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10、A【分析】根据长方形的宽=长方形的面积÷长方形的长即可列出算式,再根据多项式除以单项式的法则计算即可.【详解】解:这个长方形的宽=.故选:A.【点睛】本题考查了多项式除以单项式的实际应用,属于基础题型,正确理解题意、熟练掌握运算法则是解题的关键.11、B【分析】根据关于轴的对称点的点的特点是保持y不变,x取相反数即可得出.【详解】根据关于轴的对称点的点的特点得出,点关于轴的对称点的坐标是(-2,-3)故答案选B.【点睛】本题考查了坐标点关于y轴对称点的坐标,属于坐标轴中找对称点的基础试题.12、D【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;

D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.二、填空题(每题4分,共24分)13、27【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把代入多项式后进行移项整理是解题关键.14、y=x-2【分析】设y=kx+b,根据一次函数的图象经过点,且函数y的值随自变量x的增大而增大,可得:b=-2,且k>0,即可得到答案.【详解】设y=kx+b,∵一次函数的图象经过点,且函数y的值随自变量x的增大而增大,∴b=-2,且k>0,∴符合条件的一次函数表达式可以是:y=x-2(答案不唯一).故答案是:y=x-2【点睛】本题主要考查待定系数法求一次函数解析式以及一次函数的性质,掌握一次函数的系数的意义,是解题的关键.15、(0,3)或(3,-3)【解析】根据点到x轴的距离是纵坐标的绝对值,可得答案.【详解】解:由题意,得2a-1=3或2a-1=-3,解得a=2,或a=-1.点P的坐标是(0,3)或(3,-3),故答案为:(0,3)或(3,-3).【点睛】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.16、15【解析】根据题意已知的式子找到展开后最大的系数规律即可求解.【详解】∵展开后最大的系数为1=0+1;展开后最大的系数为2=1+1;展开后最大的系数为3=1+2;展开后最大的系数为6=1+2+3;∴展开后最大的系数为1+2+3+4=10;展开后最大的系数为1+2+3+4+5=15;故答案为:15.【点睛】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.17、三角形的稳定性【详解】钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性故答案为:三角形的稳定性18、【分析】先根据数轴的定义可得,从而可得,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:,则,因此,,,故答案为:.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题(共78分)19、同意,理由见解析【分析】利用等边对等角可得,再根据三角形内角和定理即可证明.【详解】同意,理由如下:解:∵AC=BC=BD,

∴,∵,∴,∴,∴∠ACD=90°,即△ACD是直角三角形.【点睛】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.20、(1)见解析;(2)A1(1,5),B1(1,0),C1(4,3);(3)【分析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点的坐标即可;(3)利用三角形的面积公式列式进行计算即可求解.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形;(2)点A1、B1、C1的坐标分别为:A1(1,5),B1(1,0),C1(4,3);(3)S=×5×3=.【点睛】本题考查了利用轴对称变换作图,熟悉网格结构并找出对应点的位置是解题的关键.21、-2.【解析】根据二次根式的性质,任何非0数的0次幂等于1,绝对值以及有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可.【详解】解:原式=1+3-5-1=4-6=-2.故答案为:-2.【点睛】本题考查实数的运算,利用零指数幂,负整数指数幂,二次根式的性质,绝对值正确化简各数是解题的关键.22、(1)2x+1,0;(2),1【分析】(1)原式第一项利用单项式乘以多项式法则计算展开,第二项利用平方差公式化简,将x的值代入计算即可求出值;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:(1)原式=x2+2x﹣(x2﹣1),=x2+2x﹣x2+1,=2x+1,当x=﹣时,原式=2×(﹣)+1=﹣1+1=0;(2)原式=,=,=,当x=﹣1时,原式==1.【点睛】此题考查了分式的化简求值,以及整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23、(1),;(2)甲,理由见详解【分析】(1)根据加权平均数的定义,即可求解;(2)根据方差公式,求出甲乙的方差,即可得到答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论