版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区呼伦贝尔市、兴安盟2025届数学八上期末经典模拟试题末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.对于,,,,,,其中分式有()A.个 B.个 C.个 D.个2.下列代数式中,是分式的为()A. B. C. D.3.一个圆柱形容器的容积为V,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. B.C. D.4.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个5.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC6.下列各式中,是最简二次根式的是()A. B. C. D.7.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A. B. C. D.8.正方形的边长为,其面积记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为,…按此规律继续下去,则的值为()A. B. C. D.9.要使分式有意义,x的取值范围满足()A.x≠2 B.x≠1 C.x≠1且x≠2 D.x≠1或x≠210.在平行四边形中,、的度数之比为,则的度数为()A. B. C. D.11.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.12.如图,中,垂直平分交于点,交于点.已知的周长为的周长为,则的长()A. B. C. D.二、填空题(每题4分,共24分)13.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.14.如果分式的值为零,那么x等于____________15.如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________.16.已知一个角的补角是它余角的3倍,则这个角的度数为_____.17.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.18.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)作出与△ABC关于y轴对称△A1B1C1,并写出三个顶点的坐标为:A1(_____),B1(______),C1(_______);(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;20.(8分)阅读下列材料:∵<<,即2<<3∴的整数部分为2,小数部分为﹣2请根据材料提示,进行解答:(1)的整数部分是.(2)的小数部分为m,的整数部分为n,求m+n﹣的值.21.(8分)(1)分解因式:(2)解分式方程:22.(10分)过正方形(四边都相等,四个角都是直角)的顶点作一条直线.图(1)图(2)图(3)(1)当不与正方形任何一边相交时,过点作于点,过点作于点如图(1),请写出,,之间的数量关系,并证明你的结论.(2)若改变直线的位置,使与边相交如图(2),其它条件不变,,,的关系会发生变化,请直接写出,,的数量关系,不必证明;(3)若继续改变直线的位置,使与边相交如图(3),其它条件不变,,,的关系又会发生变化,请直接写出,,的数量关系,不必证明.23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.24.(10分)甲、乙两家园林公司承接了某项园林绿化工程,知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的倍,如果甲公司先单独工作天,再由乙公司单独工作天,这样恰好完成整个工程的.求甲、乙两公司单独完成这项工程各需多少天?25.(12分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?26.如图,在中,D是的中点,,垂足分别是.求证:AD平分.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据分式的定义即可求出答案.【详解】,,,是分式,共4个;
故答案为:D.【点睛】本题考查分式的定义,解题的关键是正确理解分式的定义.2、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】这个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点睛】本题考查了分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.3、C【分析】根据题意先求出注入前一半容积水量所需的时间为,再求出后一半容积注水的时间为,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为,后一半容积注水的时间为,即可列出方程为,故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程.4、D【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:4个图形都是轴对称图形.故选D.【点睛】本题考查了轴对称图形的定义.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,
∵AF=AF,∠1=∠2,AD=AB,
∴△ADF≌△ABF,
∴∠ADF=∠ABF,
又∵∠ABF=∠C=90°-∠CBF,
∴∠ADF=∠C,
∴FD∥BC.
故选B.
6、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A、,不是最简二次根式,此选项不正确;B、,不是最简二次根式,此选项不正确;C、,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.7、A【分析】先求出列车提速后的平均速度,再根据“时间路程速度”、“用相同的时间,列车提速前行驶,提速后比提速前多行驶”建立方程即可.【详解】由题意得:设列车提速前的平均速度是,则列车提速后的平均速度是则故选:A.【点睛】本题考查了列分式方程,读懂题意,正确求出列车提速后的平均速度是解题关键.8、A【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律Sn=,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.
∵正方形ABCD的边长为1,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴S2+S2=S1.
观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,
∴Sn=.
当n=5时,S5==.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律Sn=,属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.9、B【分析】根据分式有意义的条件可得x−1≠0,再解即可.【详解】解:由题意得:x﹣1≠0,解得:x≠1,故选:B.【点睛】本题考查了分式有意义的条件.关键是掌握分式有意义的条件是分母不等于零.10、A【分析】由四边形ABCD为平行四边形,可知∠A+∠B=180°,∠A=∠C,依据可求得∠A的度数,即可求得∠C的度数.【详解】解:∵四边形ABCD为平行四边形,
∴∠A+∠B=180°,∠A=∠C,
∵,
∴∴,
故选:A.【点睛】本题主要考查平行四边形的性质:(1)邻角互补;(2)平行四边形的两组对角分别相等.11、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.12、A【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵的周长为的周长为∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.14、-1【解析】根据分式的值为0,分子为0,分母不为0,由此可得且x-1≠0,解得x=-1.故答案为-1.15、1【分析】根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB.【详解】解:∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周长=AC+AB=AB=1,
故答案为:1.【点睛】本题考查了含30度角直角三角形的性质和垂直平分线的性质,直角三角形中30°的锐角所对的直角边等于斜边的一半,培养学生运用定理进行推理论证的能力.16、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.17、1【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.18、1;【解析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.三、解答题(共78分)19、(1)﹣1,1;﹣4,2;﹣3,4;(2)作图见解析;点P坐标为(2,0).【分析】(1)分别作出点A,B,C关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A′,再连接A′B,与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求,由图知,A1(﹣1,1),B1(﹣4,2)C1(﹣3,4),故答案为:﹣1,1;﹣4,2;﹣3,4;(2)如图所示,作出点A关于x轴的对称点A′,再连接A′B,与x轴的交点即为所求点P,其坐标为(2,0).【点睛】本题考查了轴对称作图、对称点的坐标特征及距离最短问题,利用对称点的坐标特征作图是关键.20、(1)1;(1)1【分析】(1)利用例题结合,进而得出答案;(1)利用例题结合,进而得出答案.【详解】解:(1)∵,∴,∴的整数部分是1.故答案为:1;(1)由(1)可得出,,∵,∴n=3,∴.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根.21、(1)(2)x=3【分析】(1)先提取公因式,再利用完全平方公式即可分解;(2)根据分式方程的解法去分母化为整式方程,再进行求解.【详解】(1)==(2)x=3经检验,x=3是原方程的解.【点睛】此题主要考查因式分解及分式方程的求解,解题的关键是熟知分式方程的解法.22、(1),证明见解析;(2);(3)【分析】(1)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(2)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(3)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可.【详解】(1),证明:四边形是正方形,又,∴在和中,(2),理由是:四边形是正方形,又,∴在和中,∴EF=AF-AE=BE-DF(3),理由是:四边形是正方形,又,∴在和中,EF=AE-AF=DF-BE【点睛】本题考查的是三角形全等的判定和性质,掌握三角形的判定方法及能利用同角的余角相等证明是关键.23、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度蛋糕店网络安全保障合同
- 二零二四年度电商平台运营分包协议
- 瓷砖品牌形象塑造合同(2024年度)
- 2024年度产品质量担保合同
- 大连 正规安装门合同标准版可打印3篇
- MCN机构与抖音达人签约协议3篇
- 二零二四年度环保设备采购与技术改造合同
- 二零二四年度石料供应与采购合作协议书
- 二零二四年度企业培训与人才发展服务协议
- 商务合同范本(2篇)
- 《影视声音艺术与制作》教学课件(全)
- (完整版)钢结构质量通病及防治措施
- 起重吊装作业操作安全培训
- 化工仪表及自动化ppt完整版(第三版-厉玉鸣)课件
- 化工设备机械基础习习题解答-潘永亮编(1-6章)
- 潜孔钻安全的操作规程
- 印刷品供货总体服务方案
- 招投标业务工作失误检讨书
- 同一溶质不同浓度溶液混合浓度判断
- 楼盖结构分类及布置
- 关于鼓励员工考取职称及资格证书的方案23252
评论
0/150
提交评论