版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省襄阳市枣阳市太平三中学八年级数学第一学期期末质量检测模拟试题末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90° B.180° C.210° D.270°2.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40°3.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.4.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论5.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形6.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,107.如图,∠MON=600,且OA平分∠MON,P是射线OA上的一个点,且OP=4,若Q是射线OM上的一个动点,则PQ的最小值为().A.1 B.2 C.3 D.48.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.139.有一个数值转换器,原理如图所示,当输入的值为16时,输出的的值是()A. B.8 C.2 D.10.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A. B.2 C. D.11.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1C.是无理数 D.的算术平方根是312.关于等腰三角形,有以下说法:(1)有一个角为的等腰三角形一定是锐角三角形(2)等腰三角形两边的中线一定相等(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等(4)等腰三角形两底角的平分线的交点到三边距离相等其中,正确说法的个数为()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.在实数-5,-,0,π,中,最大的数是________.14.甲、乙两车从A地出发,匀速驶往B地.乙车出发后,甲车才沿相同的路线开始行驶.甲车先到达B地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离与甲车行驶的时间的函数关系的图象,则其中正确的序号是___________.①甲车的速度是;②A,B两地的距离是;③乙车出发时甲车到达B地;④甲车出发最终与乙车相遇15.如图在中,是的中线,是上的动点,是边上动点,则的最小值为______________.16.在实数0.23,4.,π,-,,0.3030030003…(每两个3之间增加1个0)中,无理数的个数是_________个.17.如图,四边形ABCD中,∠A=130°,∠D=100°.∠ABC和∠BCD的平分线交于点O,则∠O=_______度.18.计算3的结果是___.三、解答题(共78分)19.(8分)计算(1)(2)20.(8分)如图,一次函数y1=1x﹣1的图象与y轴交于点A,一次函数y1的图象与y轴交于点B(0,6),点C为两函数图象交点,且点C的横坐标为1.(1)求一次函数y1的函数解析式;(1)求△ABC的面积;(3)问:在坐标轴上,是否存在一点P,使得S△ACP=1S△ABC,请直接写出点P的坐标.21.(8分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.22.(10分)已知,等腰三角形的周长为24cm,设腰长为y(cm),底边长为x(cm).(1)求y关于x的函数表达式(2)求x的取值范围.23.(10分)2019年8月,第18届世界警察和消防员运动会在成都举行.我们在体育馆随机调查了部分市民当天的观赛时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)求抽查的市民观赛时间的众数、中位数;(3)求所有被调查市民的平均观赛时间.24.(10分)如图1,点B,C分别是∠MAN的边AM、AN上的点,满足AB=BC,点P为射线的AB上的动点,点D为点B关于直线AC的对称点,连接PD交AC于E点,交BC于点F。(1)在图1中补全图形;(2)求证:∠ABE=∠EFC;(3)当点P运动到满足PD⊥BE的位置时,在射线AC上取点Q,使得AE=EQ,此时是否是一个定值,若是请直接写出该定值,若不是,请说明理由.25.(12分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.26.已知,如图1,我们在2018年某月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”)该十字星的十字差为,再选择其它位置的十字星,可以发现“十字差”仍为1.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入6列的长方形数表中,不同位置十字星的“十字差”是一个定值吗?如果是,请求出这个定值;如果不是,请说明理由.(3)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数有关的定值,请用表示出这个定值,并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、B【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B2、C【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A=60°,∠B=75°,所以∠C=180°–60°–75°=45°.【点睛】三角形内角和定理是常考的知识点.3、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.4、B【分析】利用反例判断命题为假命题的方法对各选项进行判断.【详解】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.【点睛】此题主要考查命题真假的判断,解题的关键是熟知举反例的方法.5、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.6、A【解析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【点睛】此题考查多边形内角与外角,解题关键在于掌握计算公式.7、B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,然后利用30°角对应的直角边等于斜边的一半进一步求解即可.【详解】当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,∠MON=60°∴∠AOQ=30°∵PQ⊥OM,OP=4,∴OP=2PQ,∴PQ=2,所以答案为B选项.【点睛】本题主要考查了垂线段以及30°角对应的直角边的相关性质,熟练掌握相关概念是解题关键.8、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【点睛】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.9、D【分析】根据数值转换器的运算法则解答即可.【详解】解:当输入是16时,取算术平方根是4,4是有理数,再次输入,4的算术平方根是2,2是有理数,再次输入,2的算术平方根是,是无理数,所以输出是.故选:D.【点睛】本题考查了算术平方根的有关计算,属于常考题型,弄懂数值转换器的运算法则、熟练掌握算术平方根的定义是解题关键.10、D【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【详解】解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴CE=AD=3,在Rt△BEC中,,故选D.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.11、B【分析】分别根据平方根的定义、立方根的定义、无理数的定义以及算术平方根的定义逐一判断即可.【详解】解:A.16的平方根是±4,故本选项不合题意;B.﹣1的立方根是﹣1,正确,故本选项符合题意;C.=5,是有理数,故本选项不合题意;D.是算术平方根是,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根、平方根、立方根、无理数,熟记相关定义是解答本题的关键.12、B【分析】由题意根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:(1)如果的角是底角,则顶角等于88°,此时三角形是锐角三角形;如果的角是顶角,则底角等于67°,此时三角形是锐角三角形,此说法正确;(2)当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,所以等腰三角形的两条中线不一定相等,此说法错误;(3)若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此说法错误;(4)等腰三角形两底角的平分线的交点到三边距离相等,故此说法正确;综上可知(1)、(4)正确.故选:B.【点睛】本题考查全等三角形的判定和等腰三角形的性质以及三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题(每题4分,共24分)13、π【解析】根据正数大于0,0大于负数,正数大于负数,比较即可.【详解】根据实数比较大小的方法,可得π>>0>−>−5,故实数-5,-,0,π,中最大的数是π.故答案为π.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14、①③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为60,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由点(0,60)可知:乙1小时行驶了60km,因此乙的速度是60km/小时,
由点(1.5,0)可知:1.5小时后甲追上乙,甲的速度是=100km/小时,故①正确;由点(b,80)可知:甲到B地,此时甲、乙相距80km,,解得:b=3.5,因此A、B两地的距离是100×3.5=350km,故②错误;甲车出发3.5小时到达B地,即乙车出发4.5小时,甲车到达B地,故③正确;c=b+=4,a=80-60×=50,,解得:d=,故:甲车出发最终与乙车相遇,故④正确;
∴正确的有①③④,
故填:①③④.【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.15、【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据等腰三角形“三线合一”得出BD的长和AD⊥BC,再利用勾股定理求出AD,利用“等面积法”结合垂线段最短进一步求出最小值即可.【详解】如图,作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是△ABC的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理可得:AD=,∴,∴,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短可得:CM≥CN,即:CF+EF≥,∴CF+EF的最小值为:,故答案为:.【点睛】本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.16、3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在所列的实数中,无理数有π,,0.3030030003…(每两个3之间增加1个0)这3个,
故答案为:3【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17、1【分析】先根据四边形内角和及题意求出∠ABC+∠DCB=130°,然后根据角平分线的定义及三角形内角和可求解.【详解】解:四边形ABCD中,∠A=130°,∠D=100°,,∠ABC和∠BCD的平分线交于点O,∠ABO=∠OBC,∠DCO=∠BCO,;故答案为1.【点睛】本题主要考查四边形内角和、三角形内角和及角平分线的定义,熟练掌握多边形内角和、三角形内角和及角平分线的定义是解题的关键.18、.【分析】首先化简二次根式进而计算得出答案.【详解】原式=32.故答案为.【点睛】本题考查了二次根式的加减,正确化简二次根式是解题关键.三、解答题(共78分)19、(1);(2)【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1)y1=﹣1x+2;(1)12;(3)在坐标轴上,存在一点P,使得S△ACP=1S△ABC,P点的坐标为(0,14)或(0,﹣18)或(﹣7,0)或(9,0).【分析】(1)求出C的坐标,然后利用待定系数法即可解决问题;(1)求得A点的坐标,然后根据三角形面积公式求得即可;(3)分两种情况,利用三角形面积公式即可求得.【详解】解:(1)当x=1时,y1=1x﹣1=1,∴C(1,1),设y1=kx+b,把B(0,2),C(1,1)代入可得,解得,∴一次函数y1的函数解析式为y1=﹣1x+2.(1)∵一次函数y1=1x﹣1的图象与y轴交于点A,∴A(0,﹣1),∴S△ABC=(2+1)×1=8;∵S△ACP=1S△ABC,∴S△ACP=12(3)当P在y轴上时,∴AP•xC=12,即AP•1=12,∴AP=12,∴P(0,14)或(0,﹣18);当P在x轴上时,设直线y1=1x﹣1的图象与x轴交于点D,当y=0时,1x-1=0,解得x=1,∴D(1,0),∴S△ACP=S△ADP+S△ACD=PD•|yC|+PD•OA=12,∴PD(1+1)=12,∴PD=8,∴P(﹣7,0)或(9,0),综上,在坐标轴上,存在一点P,使得S△ACP=1S△ABC,P点的坐标为(0,14)或(0,﹣18)或P(﹣7,0)或(9,0).【点睛】本题考查了待定系数法求一次函数的解析式,坐标与图形的性质,三角形面积,以及分类讨论的数学思想,熟练掌握待定系数法和分类讨论是解题的关键.21、(1)①45°,②;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明见解析.【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,延长AB和CH交于点F,取BF的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.22、(1);(2)【分析】(1)利用等腰三角形的性质列出函数表达式即可;(2)根据等腰三角形的性质可直接得出底边的取值范围.【详解】解:(1)∵等腰三角形的周长为24cm,腰长为y(cm),底边长为x(cm),∴y关于x函数解析式为:;(2)∵x是等腰三角形的底边长,∴自变量x的取值范围为:.【点睛】此题主要考查了等腰三角形的性质以及根据实际问题列一次函数关系式,熟练应用等腰三角形的性质是解题关键.23、(1)答案见解析;(2)众数是1.5小时,中位数是1.5小时;(3)1.32小时.【分析】(1)根据观赛时间为1小时的人数和所占的百分比可以求得本次调查的人数,从而可以得到观赛时间为1.5小时的人数,进而可以将条形统计图补充完整;
(2)根据(1)中条形统计图中的数据可以得到抽查的市民观赛时间的众数、中位数;
(3)根据条形统计图中的数据可以计算出所有被调查市民的平均观赛时间.【详解】(1)本次调查的人数为:30÷30%=100,观赛时间为1.5小时的有:100﹣12﹣30﹣18=40(人),补全的条形统计图如右图所示;(2)由(1)中的条形统计图可知,抽查的市民观赛时间的众数、中位数分别是1.5小时、1.5小时;(3)1.32(小时),答:所有被调查市民的平均观赛时间是1.32小时.【点睛】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 廉政合同维护采购公平的基石
- 房产回购协议书格式
- 成建制劳务分包合作文本
- 中水利用招标文件解析
- 2024建材供货合同范本2
- 化学性污染对食品安全的影响考核试卷
- 森林改培的生态休闲与运动旅游考核试卷
- 熟人卖房合同模板
- 双向门面招租合同模板
- 汽车装修合同范例
- 《炭素材料工艺学》课程教学大纲
- DB11-T 513-2018 绿色施工管理规程
- 设计构成第四章--立体构成
- 七大洲和四大洋填图练习
- 腰椎间盘突出症的护理查房课件(PPT 27页)
- 第23章-----总需求与总供给
- 通信线路工程验收规范-原文件
- 二次供水工程技术规程(CJJ140—2010 )
- 初中苏少版八年级下册音乐1.欣赏山丹丹开花红艳艳(18张)ppt课件
- 脑梗死标准病历、病程记录、出院记录模板
- 钢铁动力厂 氮气管线不停车带压开孔工程施工方案
评论
0/150
提交评论