![北京市师范大附属中学2025届数学八上期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M06/00/2E/wKhkGWbt04mAcY5-AAG5iNrRypc070.jpg)
![北京市师范大附属中学2025届数学八上期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M06/00/2E/wKhkGWbt04mAcY5-AAG5iNrRypc0702.jpg)
![北京市师范大附属中学2025届数学八上期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M06/00/2E/wKhkGWbt04mAcY5-AAG5iNrRypc0703.jpg)
![北京市师范大附属中学2025届数学八上期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M06/00/2E/wKhkGWbt04mAcY5-AAG5iNrRypc0704.jpg)
![北京市师范大附属中学2025届数学八上期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M06/00/2E/wKhkGWbt04mAcY5-AAG5iNrRypc0705.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市师范大附属中学2025届数学八上期末考试模拟试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.计算:=()A.+ B.+ C.+ D.+2.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺3.根据下列条件作图,不能作出唯一三角形的是()A.已知两边和它们的夹角 B.已知两边和其中一条边所对的角C.已知两角和它们的夹边 D.已知两角和其中一个角所对的边4.如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对5.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则的值为()A.2 B.3 C.4 D.56.有两块面积相同的试验田,分别收获蔬菜和,已知第一块试验田每亩收获蔬菜比第二块少,则第一块试验田每亩收获蔬菜为()A. B. C. D.7.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A., B.,C., D.,8.如图,在等腰Rt△ABC中,∠ACB=90°,,点D为AB的中点,点E在BC上,CE=2,将线段ED绕点E按顺时针方向旋转90°得到EF,连接DF,然后把△DEF沿着DE翻折得到△DEF′,连接AF′,BF′,取AF′的中点G,连接DG,则DG的长为()A. B. C.2 D.9.若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.810.对于实数,,我们用符号表示,两数中较小的数,若,则的值为().A.1,,2 B.,2 C. D.211.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6C.2m+3 D.2m+612.当x=()时,互为相反数.A. B. C. D.二、填空题(每题4分,共24分)13.如果二元一次方程组的解是一个直角三角形的两条直角边,则这个直角三角形斜边上的高为_____.14.小明用加减消元法解二元一次方程组.由①②得到的方程是________.15.在平面直角坐标系中,把直线y=-2x+3沿y轴向上平移两个单位后,得到的直线的函数关系式为_____.16.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较17.0.00000203用科学记数法表示为____.18.3184900精确到十万位的近似值是______________.三、解答题(共78分)19.(8分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.20.(8分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?21.(8分)在△ABC中,CD⊥AB于点D,DA=DC=4,DB=1,AF⊥BC于点F,交DC于点E.(1)求线段AE的长;(1)若点G是AC的中点,点M是线段CD上一动点,连结GM,过点G作GN⊥GM交直线AB于点N,记△CGM的面积为S1,△AGN的面积为S1.在点M的运动过程中,试探究:S1与S1的数量关系22.(10分)如图,点B,F,C,E在一条直线上BF=CE,AC=DF.(1)在下列条件①∠B=∠E;②∠ACB=∠DFE;③AB=DE;④AC∥DF中,只添加一个条件就可以证得△ABC≌△DEF,则所有正确条件的序号是.(2)根据已知及(1)中添加的一个条件证明∠A=∠D.23.(10分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.24.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值25.(12分)如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)26.如图,已知:在坐标平面内,等腰直角中,,,点的坐标为,点的坐标为,交轴于点.(1)求点的坐标;(2)求点的坐标;(3)如图,点在轴上,当的周长最小时,求出点的坐标;(4)在直线上有点,在轴上有点,求出的最小值.
参考答案一、选择题(每题4分,共48分)1、A【解析】利用完全平方公式化简即可求出值.【详解】解:原式=y2﹣y+,故选A.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.2、D【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理列出方程,求出的方程的解即可得到芦苇的长.【详解】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故选D.【点睛】此题主要考查了勾股定理的应用,熟练运用数形结合的解题思想是解题关键.3、B【分析】根据全等三角形的判定方法得到不能作出唯一三角形的选项即可.【详解】解:A、根据SAS可得能作出唯一三角形;
B、已知两边及其中一边所对的角不能作出唯一的三角形;
C、根据ASA可得能作出唯一三角形;
D、根据AAS可得能作出唯一三角形.
故选B.【点睛】本题考查全等三角形的判定定理的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS.注意SSA不能判定两三角形全等,也不能作出唯一的三角形.4、C【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.5、B【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,∴a=0+2=2,b=0+1=1,∴a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.6、B【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程,再解方程即可.【详解】设第一块试验田每亩收获蔬菜x千克,由题意得:,解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程.7、D【分析】分别利用平行四边形的判定方法判断得出即可.【详解】A、∵AB∥CD,∴∠DAB+∠ADC=180°,而,∴∠ADC+∠BCD=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.【点睛】此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.8、B【分析】如图中,作于点,于.根据已知条件得到,,根据三角形的中位线的选择定理得到,得到,根据全等三角形的选择得到,,求得,得到,根据三角形中位线的性质定理即可得到结论.【详解】解:如图中,作于点,于.,点为的中点,,,,,,,,,,,,,,,,,,,点为的中点,取的中点,,;故选:.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.9、C【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.10、D【分析】结合题意,根据分式、绝对值的性质,分、两种情况计算,即可得到答案.【详解】若,则∴∴∴,符合题意;若,则当时,无意义当时,∴,故不合题意∴故选:D.【点睛】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解.11、C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.12、B【分析】根据相反数的定义列出方程求解即可.【详解】由题意得:解得经检验,是原分式方程的解.故选B.【点睛】本题目是一道考查相反数定义问题,根据相反数的性质:互为相反数的两个数相加得0.从而列方程,解方程即可.二、填空题(每题4分,共24分)13、.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【详解】解:,①×2+②×3,得13x=52,∴x=4,把x=4代入①,得8+3y=17,∴y=3,∴,∵3,4是一个直角三角形的两条直角边,∴斜边==5,∴这个直角三角形斜边上的高==,故答案为:.【点睛】本题考查的是解二元一次方程组,勾股定理的运用以及面积法求线段的长,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.14、【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】,①②得:.故答案为:.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.15、y=-2x+1.【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+1.
故答案为y=-2x+1.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.16、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000203用科学记数法表示为2.03×10−1,故答案为:2.03×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、【分析】根据科学记数法和近似值的定义进行解答.【详解】【点睛】考点:近似数和有效数字.三、解答题(共78分)19、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.20、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.21、(1);(1)S1+S1=4,见解析【分析】(1)先证明△ADE≌△CDB,得到DE=DB=1,在Rt△ADE中,利用勾股定理求出AE.(1)过点G作CD,DA的垂直线,垂足分别为P,Q,证明△MGP≌△NGQ,所以S1+S1=S△AGQ+S△CGP=S△ACD-S四边形GQDP,即可求解.【详解】(1)在△ABC中,CD⊥AB,AF⊥BC∴∠ADC=∠AFB=90°∵∠AED=∠CEF∴∠EAD=∠BCD在△ADE和△CDB中∴△ADE≌△CDB∴DE=DB=1∴AE=(1)在△ABC中,CD⊥AB,DA=DC=4,点G是AC的中点过点G作CD,DA的垂直线,垂足分别为P,Q.则,GP=GQ=DA=1∠PGQ=90°=∠GQN=∠GPM∵GN⊥GM∴∠MGN=90°∴∠MGP=∠NGQ∴△MGP≌△NGQS1+S1=S△AGQ+S△CGP=S△ACD-S四边形GQDP=故答案为:4【点睛】本题考查了全等三角形的判定和性质,勾股定理解直角三角形,利用三角形中位线性质求线段长度.22、(1)②③④;(2)添加条件∠ACB=∠DFE,理由详见解析.【分析】(1)由全等三角形的判定方法即可得出答案;(2)答案不唯一,添加条件∠ACB=∠DFE,证明△ABC≌△DEF(SAS);即可得出∠A=∠D.【详解】解:(1)①在△ABC和△DEF中,BC=EF,AC=DF,∠B=∠E,不能判定△ABC和△DEF全等;②∵BF=CE,∴BF+CF=CE+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);③在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);④∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:②③④;(2)答案不惟一.添加条件∠ACB=∠DFE,理由如下:∵BF=EC,∴BF+CF=EC+CF.∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴∠A=∠D.【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.23、(1)见解析;(2)CE=.【分析】(1)由三角形的内角和定理,对顶角的性质计算出∠1=∠2,等腰直角三角形的性质得BD=AD,角边角(或角角边)证明△BDF≌△ADC,其性质得BF=AC;(2)等腰三角形的性质“三线合一”证明CE=AC,计算出CE的长度为.【详解】解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.【点睛】本题综合考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的中线及三角形的内角和定理等相关知识,重点掌握全等三角形的判定与性质.24、(1)-1;(2)或.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,yC=2a+1;当x=a时,yD=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.25、见解析【解析】想法1:在DE上截取DG=DF,连接AG,先判定△ADG≌△ADF,得到AG=AF,再根据∠AEG=∠AGE,得出AE=AG,进而得到AE=AF;想法2:过A作AG⊥DE于G,AH⊥DF于H,依据角平分线的性质得到AG=AH,进而判定△AEG≌△AFH,即可得到AE=AF;想法3:将△ACD绕着点A顺时针旋转至△ABG,使得AC与AB重合,连接DG,判定△AGD是等边三角形,进而得出△AGE≌△ADF,即可得到AE=AF.【详解】证明:想法1:如图,在DE上截取DG=DF,连接AG,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠ADE=∠ADF=60°,AD=AD,∴△ADG≌△ADF,∴AG=AF,∠1=∠2,∵∠ADB=60°+∠3=60°+∠2,∴∠3=∠2,∴∠3=∠1,∵∠AEG=60°+∠3,∠AGE=60°+∠1,∴∠AEG=∠AGE,∴AE=AG,∴AE=AF;想法2:如图,过A作AG⊥DE于G,AH⊥DF于H,∵∠ADE=∠ADF=60°,∴AG=AH,∵∠FDC=60°﹣∠1,∴∠AFH=∠DFC=60°+∠1,∵∠AED=60°+∠1,∴∠AEG=∠AFH,∴△AEG≌△AFH,∴AE=AF;想法3:如图,将△ACD绕着点A顺时针旋转至△ABG,使得AC与AB重合,连接DG,∴△ABG≌△ACD,∴AG=AD,∠GAB=∠DAC,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,∴∠GAD=60°,∴△AGD是等边三角形,∴∠ADG=∠AGD=60°,∵∠ADE=60°,∴G,E,D三点共线,∴△AGE≌△ADF,∴AE=AF.【点睛】本题考查了全等三角形的判定与性质以及等边三角形的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及等边三角形的性质.26、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为;(4)最小值为1.【分析】(1)过C作直线EF∥x轴,分别过点A、B作直线EF的垂线,垂足分别为E、F,证明ΔACE≌ΔCBF,得到CF=AE,BF=CE,即可得到结论;(2)分别过点A、B作x轴的垂线,垂足分别为G、H易证ΔAGD≌ΔBHD,得到GD=HD.由G(-3,0),H(1,0),即可得到结论;(3)作点A(-5,1)关于轴的对称点A'(-5,-1),连接AP,A'P,A'C.过A'作A'R⊥y轴于R,则AP=A'P,根据ΔACP的周长=AC+AP+CP=AC+A'P+CP≥AC+A'C.根据△A'RC和△COP都是等腰直角三角形,得到PO=CO=4,从而得到结论.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中原-恒基中国沈阳沈北项目营销策划提案课件
- 《雷达系统原理》课件
- 产科超声标准课件
- 物理治疗学练习试题
- 车身判断上复习测试附答案
- 《质点的运动方程》课件
- 合理消费与消费结构课件
- 《癌痛规范化治疗》课件
- 《SPIN销售技巧》课件
- 二零二五年度品牌线上线下整合营销合同
- 人员测评方案
- 简易呼吸器的使用和心肺复苏-3
- 2024年河北省九地市中考数学摸底试卷
- (正式版)JBT 14787-2024 可同步限矩型液力耦合器
- 流行音乐(中国)
- 《标准字体设计》课件
- 2023年6月浙江高考政治试卷真题解读及答案解析(课件)
- 销售部廉政培训课件
- 七年级下册英语Unit1单元综合测试题-人教版(含答案)
- 常见症状-黄疸课件
- 部编人教版五年级下册道德与法治全册教学课件
评论
0/150
提交评论