版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省沈阳市东北育才双语学校数学八年级第一学期期末经典模拟试题末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列交通标志中,是轴对称图形的是()A. B. C. D.2.如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE=CD,AB=8cm,则△DEB的周长为()A.4cm B.8cm C.10cm D.14cm3.下列函数中,随增大而减小的是()A. B. C. D.4.我们规定:表示不超过的最大整数,例如:,,,则关于和的二元一次方程组的解为()A. B. C. D.5.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:56.下列四个交通标志中,轴对称图形是()A. B. C. D.7.多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条 B.8条 C.9条 D.12条8.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间9.已知点与点关于轴对称,则点的坐标为()A. B. C. D.10.下列运算正确的是()A.=-2 B.=3 C.=0.5 D.11.在中,与的平分线交于点I,过点I作交BA于点D,交AC于点E,,,,则下列说法错误的是A.和是等腰三角形 B.I为DE中点C.的周长是8 D.12.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm二、填空题(每题4分,共24分)13.已知一个三角形的三条边长为2、7、,则的取值范围是_______.14.对于实数a,b,定义运算:a▲b=如:2▲3=,4▲2=.按照此定义的运算方式计算[(-)▲2019]×[2020▲4]=________.15.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面S1+S2+S3的值为_______.16.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为_____17.举反例说明下面的命题是假命题,命题:若,则且,反例:__________18.命题“等腰三角形两底角相等”的逆命题是_______三、解答题(共78分)19.(8分)阅读材料:实数的整数部分与小数部分由于实数的小数部分一定要为正数,所以正、负实数的整数部分与小数部分确定方法存在区别:⑴对于正实数,如实数9.1,在整数9—10之间,则整数部分为9,小数部分为9.1-9=0.1.⑵对于负实数,如实数-9.1,在整数-10—-9之间,则整数部分为-10,小数部分为-9.1-(-10)=0.2.依照上面规定解决下面问题:(1)已知的整数部分为a,小数部分为b,求a、b的值.(2)若x、y分别是8-的整数部分与小数部分,求的值.(3)设x=,a是x的小数部分,b是-x的小数部分.求的值.20.(8分)(Ⅰ)计算:(﹣)×+|﹣2|﹣()﹣1(Ⅱ)因式分解:(a﹣4b)(a+b)+3ab(Ⅲ)化简:.21.(8分)如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数22.(10分)如图,中,,,为延长线上一点,点在上,且,若,求的度数.23.(10分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.24.(10分)解分式方程:=-.25.(12分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,与的大小关系是:(填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).26.某超市用1200元购进一批甲玩具,用800元购进乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.要求:根据上述条件,提出相关问题,并利用所学知识进行解答.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称的概念:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就是轴对称图形即可得出答案.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考察了轴对称图形,掌握轴对称图形的概念是解题的关键.2、B【分析】因为DE和CD相等,DE⊥AB,∠C=90°,所以AD平分CAB,可证得△ACD≌△AED,得到AC=AE,再根据△BDE为等腰直角三角形得出DE=BE,从而可得△DEB的周长.【详解】解:∵∠C=90°,DE⊥AB,DE=CD,
∴∠C=∠AED=90°,∠CAD=∠EAD,在Rt△ACD和Rt△AED中,,
∴△ACD≌△AED(HL),
∴AC=AE,
又∵∠AED=90°,∠B=45°,
可得△EDB为等腰直角三角形,DE=EB=CD,
∴△DEB的周长=DE+BE+DB=CD+DB+BE=CB+BE=AC+BE=AE+BE=AB=8,
故选:B.【点睛】本题考查了角平分线的判定,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.3、D【分析】根据一次函数的性质逐一判断即可得出答案.【详解】A.,,随增大而增大,不符合题意;B.,,随增大而增大,不符合题意;C.,,随增大而增大,不符合题意;D.,,随增大而减小,符合题意;故选:D.【点睛】本题主要考查一次函数的性质,掌握一次函数的图象和性质是解题的关键.4、A【分析】根据的意义可得,和均为整数,两方程相减可求出,,将代入第二个方程可求出x.【详解】解:,∵表示不超过的最大整数,∴,和均为整数,∴x为整数,即,∴①-②得:,∴,,将代入②得:,∴,故选:A.【点睛】本题考查了新定义以及解二元一次方程组,正确理解的意义是解题的关键.5、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴此三角形是直角三角形,故本选项不符合题意;
C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C
∴∠A=90°,
∴此三角形是直角三角形,故本选项不符合题意;
D、设∠A=3x,则∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,解得x=15°
∴∠C=5×15°=75°,
∴此三角形不是直角三角形,故本选项符号要求;
故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.6、C【解析】根据轴对称图形的定义:沿一条直线折叠后直线两边的部分能互相重合,进行判断即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误,故选C.【点睛】本题考查了轴对称图形,关键是能根据轴对称图形的定义判断一个图形是否是轴对称图形.7、C【分析】设这个多边形是n边形.由多边形外角和等于360°构建方程求出n即可解决问题.【详解】解:设这个多边形是n边形.由题意=180°﹣150°,解得n=12,∴则从该多边形一个顶点出发,可引出对角线的条数为12﹣3=9条,故选:C.【点睛】本题考查了多边形的内角与外角,多边形的对角线等知识,解题的关键是熟练掌握多边形外角和等于360°.8、D【解析】直接得出接近的有理数,进而得出答案.【详解】∵<<,
∴8<<9,
∴在8与9之间.
故选:D.【点睛】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.9、B【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【点睛】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.10、D【分析】根据二次根式的性质进行化简.【详解】A、,故原计算错误;B、,故原计算错误;C、,故原计算错误;D、,正确;故选:D.【点睛】本题考查二次根式的性质,熟练掌握相关知识是解题的关键,比较基础.11、B【解析】由角平分线以及平行线的性质可以得到等角,从而可以判定和是等腰三角形,所以,,的周长被转化为的两边AB和AC的和,即求得的周长为1.【详解】解:平分,
,
,
,
,
.
同理,.
和是等腰三角形;
的周长;
,
,
,
,
故选项A,C,D正确,
故选:B.
【点睛】考查了等腰三角形的性质与判定以及角平分线的定义此题难度适中,注意掌握数形结合思想与转化思想的应用.12、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.二、填空题(每题4分,共24分)13、5x9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.14、-1【分析】根据题中的新定义进行计算即可.【详解】根据题意可得,原式=,故答案为:-1.【点睛】本题考查了整数指数幂,掌握运算法则是解题关键.15、200【分析】根据正方形的面积公式和勾股定理,即可得到阴影部分的面积S1+S2+S3的值.【详解】解:∵∠ACB=90°,AC=6,BC=8,∴AB2=AC2+BC2=62+82=100∴S1+S2+S3=AC2+BC2+AB2=62+82+100=200故答案为:200【点睛】本题考查勾股定理,解题关键是将勾股定理和正方形的面积公式进行结合应用.16、1.【解析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO=8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【详解】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=1.故答案为1.【点睛】本题考查了菱形的性质、勾股定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.17、,,则且,【分析】根据要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致进行分析即可.【详解】解:因为当,时,原条件ab>0仍然成立,所以反例为:,,则且,.故答案为:,,则且,.【点睛】本题考查命题相关,熟练掌握命题的定义即判断一件事情的语句,叫做命题以及判断一个命题是假命题,只需举出一个反例即可.18、有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题(共78分)19、(1)a=2,;(2)5;(3)1【分析】(1)先求出的取值范围,然后根据题意即可求出a和b的值;(2)先求出的取值范围,然后根据不等式的基本性质即可求出8-的取值范围,从而求出x、y的值,代入求值即可;(3)将x化简,然后分别求出x的取值范围和-x的取值范围,根据题意即可求出a和b的值,代入求值即可.【详解】解:(1)∵2<<3∴的整数部分a=2,小数部分b=;(2)∵3<<4∴-4<-<-3∴4<8-<5∴8-的整数部分x=4,小数部分y=8--4=∴=(4+)(4-)=5(3)∵x=,∴-x=∵1<<2,∴2<<3,-3<<-2∴的整数部分为2,小数部分a=的整数部分为-3,小数部分b=2-∴原式==1【点睛】此题考查的是求一个数的整数部分和小数部分,掌握一个数算术平方根的取值范围的求法是解决此题的关键.20、(Ⅰ)﹣3;(Ⅱ)(a+2b)(a﹣2b);(Ⅲ)﹣.【解析】试题分析:(Ⅰ)根据负整数指数幂的意义、绝对值的意义和二次根式的乘法法则计算;(Ⅱ)先展开合并得到原式=a2-4b2,然后利用平方差公式进行因式分解;(Ⅲ)先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=-,最后进行通分即可.试题解析:(Ⅰ)原式=-+2--2=-2+2--2=-3;(Ⅱ)原式=a2+ab-4ab-4b2+3ab=a2-4b2=(a+2b)(a-2b);(Ⅲ)原式===-==-.21、28°.【分析】连接EC,根据题目已知条件可证的△ACE≌△BCE,故得到∠BCE=∠ACE,再证△BDE≌△BCE,可得到∠ECB=∠EDB,利用条件得到∠ACB=56°,从而得到∠BDE的度数.【详解】解:连接EC,如图所示∵在△ACE和△BCE中∴△ACE≌△BCE∴∠BCE=∠ACE∵BE平分∠DBC∴∠DBE=∠EBC∵CA=CB,BD=AC∴CB=DB在△BDE和△BCE中∴△BDE≌△BCE∴∠ECB=∠EDB∵∠BAC=62°,AC=BC∴∠ACB=180°-62°×2=56°∴∠BCE=∠ACE=∠EDB=56°÷2=28°∴∠EDB=28°【点睛】本题主要考查的是全等三角形的判定以及全等三角形的性质,正确的运用全等三角形的判定方法和性质是解题的关键.22、65°.【分析】先运用等腰直角三角形性质求出,再用定理可直接证明,进而可得;由即可解决问题.【详解】证明:,,,∵,∴在与中,,.;.【点睛】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.23、证明见解析.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由AD是∠BAC的平分线,AD∥PM得∠E=∠APE,AP=AE,再证△BMF≌△CMP,得PC=BF,∠F=∠CPM,进而即可得到结论.【详解】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高层展览馆施工合同模板
- 电视租赁合同三篇
- 自然灾害导致理赔客人的协议书(2篇)
- 团建策划合同
- 集体土地宅基地协议书范本
- 协议购车合同范例
- 农民承包小麦合同范例
- 院落保洁合同范例
- 木架拆除回收合同范例
- 沥青购销合同范例
- PS平面设计练习题库(附参考答案)
- 混合云架构整体设计及应用场景介绍
- 《盘点程序说明会》课件
- 期末素养综合测评卷(二)2024-2025学年鲁教版(五四制)六年级数学上册(解析版)
- 小王子-英文原版
- 考核19(西餐)试题
- 2024安全生产法解读
- 吉林省长春市(2024年-2025年小学五年级语文)人教版期末考试(上学期)试卷及答案
- 环保创业孵化器服务行业营销策略方案
- 研究生年终总结和展望
- 浙江省杭州市2023-2024学年高二上学期1月期末地理试题 含解析
评论
0/150
提交评论