北京市北京大附属中学2025届八年级数学第一学期期末调研试题含解析_第1页
北京市北京大附属中学2025届八年级数学第一学期期末调研试题含解析_第2页
北京市北京大附属中学2025届八年级数学第一学期期末调研试题含解析_第3页
北京市北京大附属中学2025届八年级数学第一学期期末调研试题含解析_第4页
北京市北京大附属中学2025届八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市北京大附属中学2025届八年级数学第一学期期末调研试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0;②a*b=b*a;③a*(b+c)=a*b+a*c;④a*b=(﹣a)*(﹣b).正确的有()个.A.1 B.2 C.3 D.42.下列图形中,是轴对称图形的是()A. B. C. D.3.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+24.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m5.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32° B.64° C.65° D.70°6.已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=x﹣k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.8.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.10.如图,AD//BC,点E是线段AB的中点,DE平分,BC=AD+2,CD=7,则的值等于()A.14 B.9 C.8 D.511.下列各组数中,不能作为直角三角形三边长度的是……()A.2、3、4 B.3、4、5 C.6、8、10 D.5、12、1312.在Rt△ABC中,∠C=90°,AB=13,AC=12,则△ABC的面积为()A.5 B.60 C.45 D.30二、填空题(每题4分,共24分)13.已知一次函数,若y随x的增大而减小,则的取值范围是___.14.如图,在△ABC中,AC=AD=BD,当∠B=25°时,则∠BAC的度数是_____.15.若关于x的分式方程有增根,则m的值为_____.16.一个等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是__________.17.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________18.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.三、解答题(共78分)19.(8分)解不等式组,并把解集在数轴上表示出来.20.(8分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.21.(8分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.22.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.23.(10分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.24.(10分)如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点A,C的坐标分别为(﹣5,﹣1),(﹣3,﹣3),并写出点D的坐标;(2)在(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.25.(12分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=15cm,BE=8cm,求DE的长.26.解分式方程

参考答案一、选择题(每题4分,共48分)1、B【分析】根据新定义的运算的意义,将其转化为常见的运算,根据常见的运算的性质逐个做出判断.【详解】解:∵a*b=0,a*b=(a+b)2,∴(a+b)2=0,即:a+b=0,∴a、b互为相反数,因此①不符合题意,a*b=(a+b)2,b*a=(b+a)2,因此②符合题意,a*(b+c)=(a+b+c)2,a*b+a*c=(a+b)2+(a+c)2,故③不符合题意,∵a*b=(a+b)2,(-a)*(-b)=(-a-b)2,∵(a+b)2=(-a-b)2,∴a*b=(-a)*(-b),故④符合题意,因此正确的个数有2个,故选:B.【点睛】本题考查了新定义运算,完全平方公式的特点和应用,新定义一种运算关键是转化为常见的运算进行计算即可.2、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;

B、不是轴对称图形,故本选项不符合题意;

C、是轴对称图形,故本选项符合题意;

D、不是轴对称图形,故本选项不符合题意.

故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.4、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将1.11111111134用科学记数法表示,故选C.考点:科学记数法5、B【解析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32°∠BEH=∠DEH∠1=180-∠BEH-∠DEH=180-2∠DEH∠2=180-∠D-∠DEH-∠EHF=180-∠B-∠DEH-(∠B+∠BEH)=180-∠B-∠DEH-(∠B+∠DEH)=180-32°-∠DEH-32°-∠DEH=180-64°-2∠DEH∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)=180-2∠DEH-180+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键6、D【分析】利用正比例函数的性质可得出k<1,再利用一次函数图象与系数的关系可得出一次函数y=x﹣k的图象经过第一、二、三象限,进而可得出一次函数y=x﹣k的图象不经过第四象限.【详解】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<1.∵1>1,﹣k>1,∴一次函数y=x﹣k的图象经过第一、二、三象限,∴一次函数y=x﹣k的图象不经过第四象限.故选:D.【点睛】本题考查了一次函数图象与系数的关系以及正比例函数的性质,牢记“,的图象在一、二、三象限”是解题的关键.7、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.8、C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9、D【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10、A【分析】延长DE,CB交于点F,通过ASA证明,则有,然后利用角平分线的定义得出,从而有,则通过和解出BC,AD的值,从而答案可解.【详解】延长DE,CB交于点F∵点E是线段AB的中点,在和中,∵DE平分解得故选:A.【点睛】本题主要考查全等三角形的判定及性质,角平分线的定义,等腰三角形的性质,能够找出是解题的关键.11、A【分析】根据勾股定理的逆定理,两边的平方和等于第三边的平方,即可得到答案.【详解】解:A、,故A不能构成直角三角形;B、,故B能构成直角三角形;C、,故C能构成直角三角形;D、,故D能构成直角三角形;故选择:A.【点睛】本题考查了勾股定理的逆定理,解题的关键是熟记构成直角三角形的条件:两边的平方和等于第三边的平方.12、D【分析】在Rt△ABC中,根据勾股定理可求得BC的长,然后根据三角形的面积公式即可得出结论.【详解】解:∵AB=13,AC=12,∠C=90°,∴BC==5,∴△ABC的面积=×12×5=30,故选:D.【点睛】本题考查了勾股定理以及三角形的面积,掌握基本性质是解题的关键.二、填空题(每题4分,共24分)13、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.14、105°【分析】由在△ABC中,AC=AD=BD,∠B=25°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,然后根据三角形内角和定理可得∠BAC的度数.【详解】解:∵AD=BD,∴∠BAD=∠B=25°,∴∠ADC=∠B+∠BAD=25°+25°=50°,∵AD=AC,∴∠C=∠ADC=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣50°=105°,故答案为105°.【点睛】本题考查等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.15、1【解析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.16、1【分析】题目给出等腰三角形有两条边长为4和8,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】∵4+4=8∴腰的长不能为4,只能为8∴等腰三角形的周长=2×8+4=1,故答案为1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17、【详解】解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,18、2:2【详解】解:∵小正方形与大正方形的面积之比为1:12,∴设大正方形的面积是12,∴c2=12,∴a2+b2=c2=12,∵直角三角形的面积是=2,又∵直角三角形的面积是ab=2,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=12+2×6=12+12=21,∴a+b=1.则a、b是方程x2﹣1x+6=0的两个根,故b=2,a=2,∴.故答案是:2:2.考点:勾股定理证明的应用三、解答题(共78分)19、﹣2≤x<1,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解不等式①得:x≥﹣2,解不等式②得:x<1,∴不等式组的解集是﹣2≤x<1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.20、(1)y=5x+1.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有,解得,∴y=5x+1.(2)绿化面积是1200平方米时,甲公司的费用为61元,乙公司的费用为5500+4×200=6300元,∵6300<61∴选择乙公司的服务,每月的绿化养护费用较少.21、(1)作图见解析;(2)作图见解析.【解析】(1)根据角平分线与垂直平分线的作图方法进行作图即可;(2)利用直角三角板,一条直角边与AC重合,另一条直角边过点B,进行作图即可.【详解】如图所示:【点睛】此题主要考查了复杂作图,关键是掌握角平分线和线段垂直平分线的基本作图方法.22、证明见解析.【解析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定.23、(1);(2),证明见解析.【分析】(1)根据三角形的外角定理,即可得到,再根据角平分线的性质可求得,最后利用三角形的外角定理即可求得.(2)根据三角形的外角定理,可求得,,由平分可知,进而得到,即可得三角之间的等量关系为.【详解】(1)∵是的外角,∴∵,∴∵是的平分线∴∵是的外角,∴∵,∴(2),证明如下:∵是的外角.∴∵是的外角.∴∵是的平分线,∴∴∴即:.【点睛】本题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论