版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省临沧市临翔区2025届数学八上期末教学质量检测模拟试题测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的A.平均数 B.众数 C.中位数 D.方差2.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°3.如图,在中,与的平分线交于点,过点作DE∥BC,分别交于点若,则的周长为()A.9 B.15 C.17 D.204.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.35.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.66.等腰三角形的一个角为50°,则它的底角为()A.50° B.65° C.50°或65° D.80°7.一次函数上有两点和,则与的大小关系是()A. B. C. D.无法比较8.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.9.若是一个完全平方式,则k的值为()A. B.18 C. D.10.如果水位下降记作,那么水位上升记作()A. B. C. D.二、填空题(每小题3分,共24分)11.如果,那么_______________.12.已知空气的密度是0.001239,用科学记数法表示为________13.八边形的外角和等于▲°.14.计算=_____.15.若解关于x的分式方程=3会产生增根,则m=_____.16.当m=____时,关于x的分式方程无解.17.照相机的三脚架的设计依据是三角形具有_____.18.是方程2x-ay=5的一个解,则a=____.三、解答题(共66分)19.(10分)证明“角的内部到角的两边的距离相等的点在角的平分线上”.20.(6分)(1)如图1,利用直尺规作图,作出的角平分线,交于点.(2)如图2,在(1)的条件下,若,,,求的长.21.(6分)在平面直角坐标系中,一条直线经过、、三点.(1)求的值;(2)设这条直线与轴交于点,求的面积.22.(8分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中,,,,、、在同一条直线上,连结.(1)请在图2中找出与全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.23.(8分)如图①,点是等边内一点,,.以为边作等边三角形,连接.(1)求证:;(2)当时(如图②),试判断的形状,并说明理由;(3)求当是多少度时,是等腰三角形?(写出过程)24.(8分)解方程组:(1)用代入消元法解:(2)用加减消元法解:25.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.26.(10分)先化简,再求值.a(a+2)-(a5+3a3)÷a3其中a=-1
参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.解答:解:15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选C.2、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.3、A【分析】由与的平分线交于点,DE∥BC,可得:DB=DO,EO=EC,进而即可求解.【详解】∵BO是∠ABC的平分线,∴∠OBC=∠DBO,∵DEBC,∴∠OBC=∠DOB,∴∠DBO=∠DOB,∴DB=DO,同理:EO=EC,∴的周长=AD+AE+DO+EO=AD+AE+DB+EC=AB+AC=5+4=1.故选A.【点睛】本题主要考查等腰三角形的性质和判定定理,掌握“双平等腰”模型,是解题的关键.4、B【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.5、D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.6、C【解析】试题分析:已知给出了一个内角是50°,没有明确是顶角还是底角,所以要分50°的角是顶角或底角两种情况分别进行求解.解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故选C.考点:等腰三角形的性质;三角形内角和定理.7、B【分析】由点两点(-1,y1)和(1,y1)的横坐标利用一次函数图象上点的坐标特征,可求出y1、y1的值,比较后即可得出结论.【详解】∵一次函数y=-1x+3上有两点(1,y1)和(-1019,y1),∴y1=-1×1+3=1,y1=-1×(-1019)+3=4041,∴y1<y1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1、y1的值是解题的关键.8、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.9、C【分析】根据完全平方公式形式,这里首末两项是和9这两个数的平方,那么中间一项为加上或减去和9乘积的2倍.【详解】解:是一个完全平方式,首末两项是和9这两个数的平方,,解得.故选:C.【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.10、A【解析】根据正负数的意义:表示具有相反意义的量,即可判断.【详解】解:如果水位下降记作,那么水位上升记作故选A.【点睛】此题考查的是正负数意义的应用,掌握正负数的意义:表示具有相反意义的量是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据完全平方公式进行求解即可.【详解】解:∵,∴,∴,故答案为1.【点睛】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.12、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.【点睛】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.13、360【分析】根据多边形的外角和等于360°进行解答.【详解】根据多边形的外角和等于360°,∴八边形的外角和等于360°14、10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.15、1【分析】先去分母得整式方程,解整式方程得到,然后利用方程的增根只能为3得到,再解关于m的方程即可.【详解】解:去分母得,解得,因为分式方程会产生增根,而增根只能为3,所以,解得,即当时,分式方程会产生增根.故答案为:1.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.16、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.17、稳定性.【分析】根据三角形具有稳定性解答.【详解】解:照相机的三脚架的设计依据是三角形具有三角形的稳定性,故答案为:稳定性.【点睛】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.18、-1【解析】试题解析:把代入方程2x-ay=5,得:4-a=5,解得:a=-1.三、解答题(共66分)19、见解析.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质进行证明.【详解】已知:如图,PE⊥OA于E,PF⊥OB于F,且PE=PF,
求证:点P在∠AOB的平分线上.
证明:在Rt△POE和Rt△POF中,
∴Rt△POE≌△RtPOF,
∴∠EOP=∠FOP,∴OP平分∠AOB
∴点P在∠AOB的平分线上.【点睛】本题考查的是角平分线的判定的证明,知晓直角三角形全等的判定定理是解题的关键.这是文字证明题,解题有三个步骤:一是分清题设和结论,画出图形;二是结合图形写出已知、求证;三是写出证明过程.20、(1)见解析;(2)1.5【分析】(1)利用基本作法作BP平分∠ABC;(2)作辅助线PD⊥BC,利用勾股定理求BC,再利用角平分线的性质得AP=PD,再通过在中,利用勾股定理:,列出等式求出PD,即可求出AP.【详解】(1)如图(2)过点P作PD⊥BC于点D∵,∴BC=5∵BP平分,,PD⊥BC∴AP=PD∴△APB≌△APD∴AB=BD=3设AP=PD=,则PC=4-,CD=2在中:,即∴∴=1.5【点睛】本题考查了作图-基本作图:熟练掌握基本作图.也考查了全等、勾股定理性质的应用.21、(1)7;(2)1【分析】(1)利用待定系数法求出直线的解析式,进而即可求解;
(2)求出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.【详解】(1)设直线的解析式为:y=kx+b,把,代入,可得:,解得:,∴直线解析式为:y=−2x+1,把代入y=−2x+1中,得:a=7;(2)由(1)得:点B的坐标为(−2,7),令x=0,则y=1,∴直线与y轴的交点D坐标为(0,1),∴的面积=×1×2=1.【点睛】本题主要考查一次函数图象和性质,掌握待定系数法以及一次函数图象上点的坐标特征,是解题的关键.22、(1)与全等的三角形为△ACD,理由见解析;(2)见解析【分析】(1)根据等式的基本性质可得∠BAE=∠CAD,然后利用SAS即可证出≌△ACD;(2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与全等的三角形为△ACD,理由如下∵∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD在和△ACD中∴≌△ACD(2)∵≌△ACD,∴∠ABE=∠ACD=45°∴∠DCB=∠ACD+∠ACB=90°∴【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.23、(1)证明见解析;(2)是直角三角形,证明见解析;(3)当为100°、130°、160°时,△AOD是等腰三角形.【分析】(1)利用等边三角形的性质证明即可;(2)是直角三角形,利用,得到,再分别求出∠CDO、∠COD即可解答;(3)分三种情况讨论:①②③,即可解答.【详解】(1)∵△ABC和△OBD是等边三角形∴即在△ABO和△CBD中∴(2)直角三角形∵∴∵∴,∴△COD是直角三角形(3)①,需∴∴②,需∴∴③,需∴∴∴当为100°、130°、160°时,△AOD是等腰三角形【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、等边三角形的性质、直角三角形的性质、等腰三角形的性质是解题的关键.24、(1)(2)【分析】(1)先将②变形,然后利用代入消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 许昌学院《软件工程》2023-2024学年第一学期期末试卷
- 小班儿童自我管理能力的提升计划
- 四年级数学(小数加减运算)计算题专项练习与答案
- 学习型校园建设目标计划
- 徐州工程学院《软件工程》2022-2023学年第一学期期末试卷
- 医疗质量控制与风险管理总结计划
- 班级参观学习活动的组织实施计划
- 成本控制在生产计划中的实践
- 引导学生树立正面价值观的方式计划
- 生物实验室使用指南计划
- (完整)运输方案
- 列宁人物课件
- 第15课《建设美丽中国》第2框《优化生态安全屏障体系》课件 2023-2024学年 中职高教版(2023)中国特色社会主义
- 手术质量控制指标
- 2024届北京市朝阳区高三上学期期末数学试题(解析版)
- 2024版新生产安全事故罚款处罚规定解读
- 供热系统设计说明书
- MOOC 房地产管理-华中科技大学 中国大学慕课答案
- 辽宁自贸区企业所得税优惠政策
- 2024年江苏省高中信息技术合格性考试选择题试题(答案详解)
- 【安井食品公司偿债能力存在的问题及对策9000字】
评论
0/150
提交评论