2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题含解析_第1页
2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题含解析_第2页
2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题含解析_第3页
2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题含解析_第4页
2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南京市高淳区八年级数学第一学期期末质量检测模拟试题模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.102.已知线段,,线段与、构成三角形,则线段的长度的范围是()A. B. C. D.无法确定3.如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A.AB∥DE,且AC不平行于DF. B.BE=EC=CFC.AC∥DF.且AB不平行于DE D.AB∥DE,AC∥DF.4.一个长方形的面积是,且长为,则这个长方形的宽为()A. B. C. D.5.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为()A. B. C. D.6.若分式方程有增根,a的值为()A.5 B.4 C.3 D.07.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20° B.60° C.50° D.40°8.若无解,则m的值是()A.-2 B.2 C.3 D.-39.人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为()A.7.7×10﹣6 B.7.7×10﹣5 C.0.77×10﹣6 D.0.77×10﹣510.下列图形中AD是三角形ABC的高线的是()A. B. C. D.11.若分式方程无解,则的值为()A.5 B. C. D.12.在平面直角坐标系xOy中,点A(-1,-2)关于x轴对称的点的坐标是A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2)二、填空题(每题4分,共24分)13.若,,则的值是_________.14.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2.0),点(0,1),有下列结论:①关于x的方程kx十b=0的解为x=2:②关于x方程kx+b=1的解为x=0;③当x>2时,y<0;④当x<0时,y<1.其中正确的是______(填序号).15.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)16.如图,在正方形的内侧,作等边,则的度数是________.17.已知三个非负数a、b、c满足a+2b=1和c=5a+4b,则b的取值范围是_____,c的取值范围是_____.18.一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),则方程组的解为_______.三、解答题(共78分)19.(8分)已知,如图所示,在中,.(1)作的平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若,,求的长.20.(8分)如图,已知线段AB,根据以下作图过程:(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;(2)过C、D两点作直线CD.求证:直线CD是线段AB的垂直平分线.21.(8分)因式分解:.22.(10分)某山区有23名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要元,一名小学生的学习费用需要元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程).23.(10分)某学校计划的体育节进行跳绳比赛,为此学校准备购置长、短两种跳绳若干条,若花费480元购买的长跳绳的数量是花费480元购买的短跳绳的数量的,已知每条长跳绳比每条短跳绳贵4元,求购买一条长跳绳、一条短跳绳各需多少元?24.(10分)在等腰Rt△ABC中,∠C=90°,AC=BC,点M,N分别是边AB,BC上的动点,△BMN与△B′MN关于直线MN对称,点B的对称点为B′.(1)如图1,当B′在边AC上时,若∠CNB′=25°,求∠AMB′的度数;(2)如图2,当∠BMB′=30°且CN=MN时,若CM•BC=2,求△AMC的面积;(3)如图3,当M是AB边上的中点,B′N交AC于点D,若B′N∥AB,求证:B′D=CN.25.(12分)如图,已知△ABC的其中两个顶点分别为:A(-4,1)、B(-2,4).(1)请根据题意,在图中建立平面直角坐标系,并写出点C的坐标;(2)若△ABC每个点的横坐标保持不变,纵坐标分别乘-1,顺次连接这些点,得到△A1B1C1,画出△A1B1C1,判断△A1B1C1与△ABC有怎样的位置关系?并写出点B的对应点B1的坐标.26.如图所示,在中,,,于点,平分,于点,求的度数.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为110°﹣135°=45°,n=360°÷45°=1.故选C.考点:多边形内角与外角.2、C【分析】根据三角形的三边关系定理“任意两边之和大于第三边,任意两边之差小于第三边”即可得到的取值范围.【详解】∵,,线段与、构成三角形∴∴故选:C【点睛】考查了三角形三边关系定理,此类求三角形第三边的范围的题目,实际上就是根据三边关系列出不等式,然后解不等式即可.3、D【分析】根据题中条件△ABC≌△DEF,得出∠2=∠F,∠1=∠B,进而可得出结论.【详解】∵△ABC≌△DEF,在△ABC和△DEF中,∴AB=DE,BC=EF,AC=DF,∠2=∠F,∠1=∠B,∴AB∥DE,AC∥DF.所以答案为D选项.【点睛】本题主要考查了全等三角形的性质,熟练掌握相关概念是解题关键.4、A【分析】根据长方形的宽=长方形的面积÷长方形的长即可列出算式,再根据多项式除以单项式的法则计算即可.【详解】解:这个长方形的宽=.故选:A.【点睛】本题考查了多项式除以单项式的实际应用,属于基础题型,正确理解题意、熟练掌握运算法则是解题的关键.5、D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.6、A【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可得出答案.【详解】去分母得:x+1=2x-8+a有分式方程有增根,得到x-4=0,即x=4把x=4代入整式方程的:a=5所以答案选A【点睛】本题考查的是分式有增根的意义,由根式有增根得出x的值是解题的关键.7、D【分析】由∠BAC的大小可得∠B与∠C的和,再由线段垂直平分线,可得∠BAP=∠B,∠QAC=∠C,进而可得∠PAQ的大小.【详解】∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴BP=AP,AQ=CQ,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°.故选D.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质和判定.熟练掌握垂直平分线的性质以及等腰三角形的性质和判定是解题的关键.8、C【解析】试题解析:方程两边都乘(x-4)得:m+1-x=0,∵方程无解,∴x-4=0,即x=4,∴m+1-4=0,即m=3,故选C.点睛:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000077=7.7×10﹣1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC的顶点A作AD⊥BC于点D,点A与点D之间的线段叫做三角形的高线,∴D符合题意,故选D.【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.11、B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=1,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:3x−2-m=2x+2,整理得x=m+4由分式方程无解,得到x+1=1,即x=−1,将x=−1代入整式方程得:-1=m+4,解得:m=−5,故选:B.【点睛】此题考查了分式方程的解,分式方程无解即为最简公分母为1.12、C【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.【详解】点A(-1,-2)关于x轴对称的点的坐标是(-1,2).故选C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.二、填空题(每题4分,共24分)13、1【分析】首先提取公因式,进而将已知代入求出即可.【详解】,,.故答案为:1.【点睛】此题考查因式分解,整式的求值计算,将多项式分解因式后进行计算较为简便.14、①②③【分析】根据一次函数的图象与性质判断即可.【详解】①由一次函数y=kx+b的图象与x轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b的图象与y轴点(0,1),当y=1时,x=0,即方程kx+b=1的解为x=0,故此项正确;③由图象可知,x>2的点都位于x轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于1,即当x<0时,y﹥1,故此项错误,所以正确的是①②③,故答案为:①②③.【点睛】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.15、∠D=∠B【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC,DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).16、15°【分析】根据等边三角形的性质可得CD=DE,根据正方形的性质可得AD=CD,从而得到AD=DE,再根据等边对等角可得∠DAE=∠DEA,然后求出∠ADE=30°,再根据三角形内角和求出∠DAE,进一步求出∠BAE即可.【详解】解:∵△DCE是等边三角形,

∴CD=DE,

∵四边形ABCD是正方形,

∴CD=AD,

∴AD=DE,

∴∠DAE=∠DEA.

又∠ADE=∠ADC-∠EDC=90°-60°=30°,∴∠EAD=×(180°-30°)=75°,

∴∠BAE=90°-75°=15°.

故答案为:15°.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.17、【分析】根据a+2b=1,可得a=1−2b,再根据a、b是非负数,求出b的取值范围即可;根据已知条件用含b的代数式表示c,再根据b的取值范围,求出c的取值范围即可.【详解】解:∵a+2b=1,∴a=1−2b,∵a、b是非负数,∴a≥0,b≥0,∴1−2b≥0,∴0≤b≤;∵a+2b=1,c=1a+4b,∴c=1-6b,∵0≤b≤,∴-3≤-6b≤0,∴2≤1-6b≤1,即2≤c≤1.故答案为,.【点睛】此题主要考查了不等式的性质和应用,分别用含b的代数式表示a,c是解题关键.18、【分析】一次函数的交点坐标即是两个一次函数解析式组成的方程组的解,由此即可得到方程组的解.【详解】∵一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),∴方程组的解为,故答案为:.【点睛】此题考查两个一次函数的交点坐标与方程组的解的关系,正确理解方程组与依次函数的关系是解题的关键.三、解答题(共78分)19、(1)答案见解析;(2)1【解析】(1)根据角平分线的尺规作图步骤,画出图形即可;

(2)过点D作DE⊥AB于点E,先证明DE=DC=6,BC=BE,再根据AD=10,求出AE,设BC=x,则AB=x+8,根据勾股定理求出x的值即可.【详解】(1)作图如下:(2)过点D作DE⊥AB于点E,∵DC⊥BC,BD平分∠ABC,∴DE=DC=6,∵AD=10,∴AE=,∵∠DBC=∠DBE,∠C=∠BED=90°,BD=BD,∴∆DBC≅∆DBE(AAS),∴BE=BC,设BC=x,则AB=x+8,∴在Rt△ABC中,由勾股定理得:x2+162=(x+8)2,解得:x=12,∴AB=12+8=1.【点睛】本题主要考查尺规作角平分线,角平分线的性质定理以及勾股定理,添加辅助线,构造直角三角形,利用勾股定理列方程,是解题的关键.20、见解析【分析】连接AC、BC、AD、BD,根据SSS证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,△AOD≌△BOD,从而得到AO=BO,OC⊥AB,OC⊥AB,再得出结论.【详解】连接AC、BC、AD、BD,如图所示:∵分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点,∴AC=BC,AD=BD,在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACO=∠BCO、∠ADO=∠BDO,在△AOC和△BOC中,,∴△AOC≌BOC,∴OA=OB,∠COA=∠COB=90º,∴OC垂直平分AB,同理可证△AOD≌△BOD,OC垂直平分AB,∴直线CD是线段AB的垂直平分线.【点睛】考查了全等三角形的判定和性质,解题关键是证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,再得到OC垂直平分AB.21、【分析】把当做一个整体理由十字相乘法因式分解,再分解到不能分为止.【详解】解:原式【点睛】此题主要考查因式分解,解题的关键是熟知整体法与十字相乘法的应用.22、(1);(2)4,7【分析】(1)根据表格中的前两排数据,即①4000元捐助2名中学生和4名小学生;②4200元捐助3名中学生和3名小学生,列方程组求解;(2)根据共有23名中、小学生因贫困失学和捐款数列出方程组,即可求得初三捐助的中、小学生人数.【详解】(1),解得;(2)设初三年级学生可捐助的贫困中、小学生人数分别为.则,解得,故填4,7.【点睛】此题考查了二元一次方程组的应用,解题关键是弄清题意,从表格中找到合适的等量关系,列出方程组.23、购买长跳绳为16元,短跳绳为12元【分析】设购买一条短跳绳x元,则购买长跳绳元,根据题意列分式方程,解方程即可.【详解】解:设购买短跳绳x元,则购买长跳绳元,依题意,有:,化简,解得:.所以,购买长跳绳为16元,短跳绳为12元.【点睛】本题考查的是分式方程的实际应用,根据题意列出分式方程,注意其中分式方程有增根的情况.24、(1)65°;(2);(3)见解析【分析】(1)由△MNB′是由△MNB翻折得到,推出∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,推出∠NMB=∠NMB′=57.5°,可得∠BMB°=115°解决问题.(2)如图2,作MH⊥AC于H.首先证明,推出S△ACM=即可解决问题.(3)如图3,设AM=BM=a,则AC=BC=a.通过计算证明CN=DB′即可.【详解】(1)如图,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∵△MNB′是由△MNB翻折得到,∴∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,∴∠NMB=∠NMB′=57.5°,∴∠BMB′=115°,∴∠AMB′=180°-115°=65°;(2)∵△MNB′是由△MNB翻折得到,∠BMB′=30°,∴∠BMN=∠NMB′=15°,∵∠B=45°,∴∠CNM=∠B+∠NMB=60°,∵CN=MN,∴△CMN是等边三角形,∴∠MCN=60°,∵∠ACB=90°,∴∠ACM=30°,如图,作MH⊥A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论