2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题含解析_第1页
2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题含解析_第2页
2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题含解析_第3页
2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题含解析_第4页
2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省宁德市福鼎县八年级数学第一学期期末经典模拟试题试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在等腰中,,,点在边上,且,点在线段上,满足,若,则是多少?()A.9 B.12 C.15 D.182.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.3.下列计算正确的是()A.=2 B.﹣=2C.=1 D.=3﹣24.图1中,每个小正方形的边长为1,的三边a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<a<b D.c<b<a5.下列运算中,正确的是()A. B.C. D.6.若,则下列结论正确的是()A. B. C. D.7.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.128.下列命题中,真命题是()A.过一点且只有一条直线与已知直线平行B.两个锐角的和是钝角C.一个锐角的补角比它的余角大90°D.同旁内角相等,两直线平行9.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.1010.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交的延长线于点F,垂足为点E,且BE=3,则AD=____.12.如图,在中,,,边的垂直平分线交,于,,则的周长为__________.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,在中,是的垂直平分线,,则的周长为______.15.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.16.如图,在中,,,是的一条角平分线,为的中点,连接,若,则的面积为_________.17.如图,在平面直角坐标系中,矩形的边、分别在轴、轴上,点在边上,将该矩形沿折叠,点恰好落在边上的处.若,,则点的坐标是__________.18.计算:=_________.三、解答题(共66分)19.(10分)一次函数y=kx+b.当x=﹣3时,y=0;当x=0时,y=﹣4,求k与b的值.20.(6分)如图所示,AB//DC,ADCD,BE平分∠ABC,且点E是AD的中点,试探求AB、CD与BC的数量关系,并说明你的理由.21.(6分)如图,直线EF与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点F的坐标为(0,6),点A的坐标为(-6,0),点P(x,y)是直线EF上的一个动点,且P点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是?22.(8分)已知,在中,,点为的中点.(1)观察猜想:如图①,若点、分别为、上的点,且于点,则线段与的数量关系是_______;(不说明理由)(2)类比探究:若点、分别为、延长线上的点,且于点,请写出与的数量关系,在图②中画出符合题意的图形,并说明理由;(3)解决问题:如图③,点在的延长线上,点在上,且,若,求的长.(直接写出结果,不说明理由.)23.(8分)如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.24.(8分)图①是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:;方法2:;(2)观察图②请你写出下列三个代数式:之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知:,求的值;②已知:,求:的值.25.(10分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点驶向终点,在整个行程中,龙舟离开起点的距离(米)与时间(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点与终点之间相距.(2)分别求甲、乙两支龙舟队的与函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?26.(10分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先依题意可得ADC与ABC面积比为3:4,再证明ABE≌CAF,即可得出ABE与CDF的面积之和为ADC的面积,问题解决.【详解】解:∵ABC为等腰三角形∴AB=AC∵∴∵ABC与ADC分别以BC和DC为底边时,高相等∴ADC与ABC面积比为3:4∵∴∵∴∠BEA=∠AFC∵∠BED=∠ABE+∠BAE,∠BAE+∠CAF=∠BAC,∴∠ABE=∠CAF∴在ABE与CAF∴ABE≌CAF(AAS)∴ABE与CAF面积相等∴故选:C.【点睛】本题主要考查了三角形全等的判定与性质以及三角形面积求法,熟练掌握全等三角形面积相等以及高相等的两个三角形的面积的比等于底边的比是解题关键.2、A【分析】甲型机器人每台万元,根据万元购买甲型机器人和用万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台万元,根据题意,可得故选.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3、C【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.【详解】解:、,所以选项错误;、,所以选项错误;、,所以选项正确;、,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4、C【解析】通过小正方形网格,可以看出AB=4,AC、BC分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC、BC,然后比较三边的大小即可.解答:解:∵AC==5=,BC=AB=4=,∴b>a>c,即c<a<b.故选C.5、A【分析】根据同底数幂的乘法,可判断A;根据合并同类项,可判断B;根据幂的乘方,可判断C,根据积的乘方,可判断D.【详解】A、,该选项正确;

B、,不是同类项不能合并,该选项错误;

C、,该选项错误;

D、,该选项错误;

故选:A.【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方,积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6、B【分析】直接利用多项式乘法运算法则得出p的值,进而得出n的值.【详解】解:∵,∴(3x+2)(x+p)=3x2+(3p+2)x+2p=mx2-nx-2,∴m=3,p=-1,3p+2=-n,∴n=1,故选B.【点睛】此题考查了因式分解的意义;关键是根据因式分解的意义求出p的值,是一道基础题.7、C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)=x2+(p+q)x+pq=x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.8、C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,是假命题;B、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C、一个锐角的补角比它的余角大90°,是真命题;D、同旁内角互补,两直线平行,是假命题;故选:C.【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键.9、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.10、B【分析】根据△ABE≌△ACF,可得三角形对应边相等,由EC=AC-AE即可求得答案.【详解】解:∵△ABE≌△ACF,AB=5,AE=2,∴AB=AC=5,∴EC=AC-AE=5-2=3,故选:B.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】由题意易证△ACD≌△BCF,△BAE≌△FAE,然后根据三角形全等的性质及题意可求解.【详解】解:AD平分∠BAC,BE⊥AD,∠BAE=∠FAE,∠BEA=∠FEA=90°,AE=AE,△BAE≌△FAE,BE=EF,BE=3,BF=1,∠ACB=90°,∠F+∠FBC=90°,∠EAF+∠F=90°,∠ACD=∠BCF=90°,∠FBC=∠DAC,AC=BC,△ACD≌△BCF,AD=BF=1;故答案为1.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等判定的条件是解题的关键.12、12【分析】先根据线段垂直平分线的性质可得,通过观察图形可知周长等于,再根据已知条件代入数据计算即可得解.【详解】∵是的垂直平分线∴∵,∴的周长故答案是:【点睛】本题涉及到的知识点主要是线段垂直平分线的性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.13、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.14、10【分析】首先根据线段垂直平分线的性质,得出AD=CD,然后将的周长进行边长转换,即可得解.【详解】∵是的垂直平分线,∴AD=CD∵,∴的周长为:AB+BD+AD=AB+BD+DC=AB+BC=3+7=10故答案为:10.【点睛】此题主要考查线段垂直平分线的性质,熟练掌握,即可解题.15、135°【分析】根据正多边形的内角和公式计算即可.【详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【点睛】本题考查了正多边形的内角和,掌握知识点是解题关键.16、【分析】作于点F,利用角平分线的性质可得DF长,由中点性质可得AE长,利用三角形面积公式求解.【详解】解:如图,作于点F是的角平分线为的中点所以的面积为.故答案为:.【点睛】本题考查了角平分线的性质,灵活利用角平分线上的点到角两边的距离相等是解题的关键.17、【分析】由勾股定理可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【详解】设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,则OC=b+4,由题意可得,AF=AB=OC=b+4,∵∠AOF=90°,OA=8,∴b2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).【点睛】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18、1【分析】先计算,再计算得出结果即可.【详解】==1,故答案为:1.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.三、解答题(共66分)19、k=–,b=–1;【分析】将已知两对x与y的值代入一次函数解析式即可求出k与b的值.【详解】将x=–3,y=0;x=0,y=–1分别代入一次函数解析式得:,解得,即k=–,b=–1.【点睛】本题考查的是一次函数,熟练掌握待定系数法是解题的关键.20、BC=AB+CD,理由见解析【分析】过点E作EF⊥BC于点F,只要证明△ABE≌△FBE(AAS),Rt△CDE≌Rt△CFE(HL)

即可解决问题;【详解】解:证明:∵AB//DC,ADCD,∴∠A=∠D=90°,过点E作EF⊥BC于点F,则∠EFB=∠A=90°,

又∵BE平分∠ABC,

∴∠ABE=∠FBE,∵BE=BE,

∴△ABE≌△FBE(AAS),

∴AE=EF,AB=BF,

又点E是AD的中点,

∴AE=ED=EF,

∴Rt△CDE≌Rt△CFE(HL),

∴CD=CF,

∴BC=CF+BF=AB+CD.【点睛】本题考查全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、(1)y=x+1;(2)S=x+18(﹣8<x<0);(3)点P的坐标为(﹣5,)时,△OPA的面积是.【分析】(1)用待定系数法直接求出;

(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;

(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:解得,k=;∴直线EF的解析式为y=x+1.(2)如图,

作PD⊥x轴于点D,∵点P(x,y)是直线y=x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=x+1∴S=OA•PD=×1×(x+1)=x+18(﹣8<x<0);(3)由题意得,x+18=,解得,x=﹣5,则y=×(﹣5)+1=,∴点P的坐标为(﹣5,)时,△OPA的面积是.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,解题的关键是求出直线EF解析式.22、(1)BE=AF;(2)BE=AF,理由见解析;(3).【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF;(3)过点M作MG∥BC,交AB的延长线于点G,同理证明△BMG≌△NMA,得到AN=GB=1,再根据等腰直角三角形求出AG的长,即可求解.【详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.(2)BE=AF理由:如图②,连结AD,∵∠BAC=90°,AB=AC,∴∠ABC=∠C=(180°-∠BAC)=(180°-90°)=45°∵BD=AD,AB=AC,∴AD⊥BC,∴∠BAD=∠CAD=∠BAC=×90°=45°,∴∠BAD=∠ABC,∴AD=BD又∠CAD=∠ABC=45°,∴∠DAF=∠DBE=135°∵DE⊥DF,∴∠BDE+∠BDF=90°又AD⊥BC,∴∠ADF+∠BDF=90°,∴∠BDE=∠ADF在△BDE和△ADF中,∴△BDE≌△ADF,∴BE=AF(3)如图③,过点M作MG∥BC,交AB的延长线于点G,∵DA⊥BC,∴AM⊥GM,故△AMG为等腰直角三角形∴GM=AM=2,故AG=2∵同(1)理可得△BMG≌△NMA,∴AN=GB=1,∴=AG-BG=AG-AN=.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是熟知全等三角形的判定及等腰三角形的性质.23、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.

(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;

(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;

②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【详解】解:(1)如图1,

由题可得:AP=OQ=1×t=t,

∴AO=PQ.

∵四边形OABC是正方形,

∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.

∴BP=,

∵DP⊥BP,

∴∠BPD=90°.

∴∠BPA=90°-∠DPQ=∠PDQ.

∵AO=PQ,AO=AB,

∴AB=PQ.

在△BAP和△PQD中,,

∴△BAP≌△PQD(AAS).

∴AP=QD,BP=PD.

∵∠BPD=90°,BP=PD,

∴∠PBD=∠PDB=45°.

∵AP=t,

∴DQ=t

∴点D坐标为(t,t).

故答案为:,(t,t),45°.

(2)△POE周长是一个定值为1,理由如下:

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=1.

∴△POE周长是定值,该定值为1.

(3)①若BP=BE,

在Rt△BAP和Rt△BCE中,,

∴Rt△BAP≌Rt△BCE(HL).

∴AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO=5-t.

∵∠POE=90°,

∴△POE是等腰直角三角形,

∴PE=PO=(5-t).

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴EP=t+t=2t.

∴(5-t)=2t.

解得:t=5-5,

∴当t为(5-5)秒时,BP=BE.

②△POE的面积能等于△POE周长的一半;理由如下:

由①得:当BP=BE时,AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO.

则△POE的面积=OP2=5,

解得:OP=,

∴PE=OP==2;

即△POE的面积能等于△POE周长的一半,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论