2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题含解析_第1页
2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题含解析_第2页
2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题含解析_第3页
2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题含解析_第4页
2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省南阳宛城区四校联考数学八上期末质量检测模拟试题试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下面运算结果为的是A. B. C. D.2.是同类二次根式的是()A. B. C. D.3.一个多边形的内角和等于外角和的两倍,那么这个多边形是()A.三边形 B.四边形 C.五边形 D.六边形4.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.85.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.7.以下关于直线的说法正确的是()A.直线与x轴的交点的坐标为(0,-4)B.坐标为(3,3)的点不在直线上C.直线不经过第四象限D.函数的值随x的增大而减小8.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,若S△ABC=12,DF=2,AC=3,则AB的长是()A.2 B.4 C.7 D.99.能使分式有意义的条件是()A. B. C. D.10.下列各式计算正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若△ABC中,AD是BC边上的高线,AE平分∠BAC,∠B=40°,∠C=50°,则∠EAD=_____°.12.现定义一种新的运算:,例如:,则不等式的解集为.13.正七边形的内角和是_____.14.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.15.若代数式的值为零,则=____.16.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC=cm.17.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.18.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙高一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长______尺(1丈=10尺).三、解答题(共66分)19.(10分)分解因式:(1)ax2﹣9a;(2)4ab2﹣4a2b﹣b1.20.(6分)如图,,点、分别在边、上,且,请问吗?为什么?21.(6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.22.(8分)阅读理解:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,……拓展应用:(1)分解因式:(2)根据规律可得(x-1)(xn-1+……+x+1)=(其中n为正整数)(3)计算:23.(8分)化简:.24.(8分)如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求直线AC的函数关系式;(3)求点B的坐标.25.(10分)如图,已知直线与直线、分别交于点、,点在上,点在上,,,求证:.26.(10分)(1)解方程.(2)先化简()÷,再从x≤2的非负整数解中选一个适合的整数代入求值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.2、A【分析】根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、=4,与被开方数相同,是同类二次根式;B、=2,与被开方数不同,不是同类二次根式;C、=,与被开方数不同,不是同类二次根式;D、,与被开方数不同,不是同类二次根式.故选:A.【点睛】此题考查的是同类二次根式的判断,掌握同类二次根式的定义是解决此题的关键.3、D【解析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n边形的内角的和等于:(n-2)×180°(n大于等于3且n为整数);多边形的外角和为360°.4、A【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC,∠OCB=∠OCE,根据平行线的性质可得:∠OBC=∠DOB,∠OCB=∠COE,所以∠OBD=∠DOB,∠OCE=∠COE,则BD=DO,CE=OE,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质5、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.6、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,

∴凉亭选择△ABC三条角平分线的交点.

故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.7、B【分析】利用一次函数图象上点的坐标特征可得出结论A错误,把(3,3)代入函数解析式可得结论B正确;利用一次函数图象与系数的关系可得出结论C错误;利用一次函数的性质可得出结论D错误.【详解】解:A、当y=0时,2x-4=0,解得:x=2,∴直线y=2x-4与x轴的交点的坐标为(2,0),选项A不符合题意;B、当x=3时,y=2x-4=2,∴坐标为(3,3)的点不在直线y=2x-4上,选项B符合题意;C、∵k=2>0,b=-4<0,∴直线y=2x-4经过第一、三、四象限,选项C不符合题意;D、∵k=2>0,∴函数y=2x-4的值随x的增大而增大,选项D不符合题意.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一判定四个选项的正误是解题的关键.8、D【解析】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.9、B【解析】先根据分式有意义的条件列出关于的不等式,再求出的取值范围即可.【详解】解:∵分式有意义∴∴.故选:B.【点睛】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题关键.10、D【解析】试题解析:A.,故原选项错误;B.,故原选项错误;C.,故原选项错误;D.,正确.故选D.二、填空题(每小题3分,共24分)11、1【分析】由三角形的高得出,求出,由三角形内角和定理求出,由角平分线求出,即可得出的度数.【详解】解:中,是边上的高,,,,平分,,.故答案为:1.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.12、【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【详解】根据题意知:(﹣1)1﹣1x≥0,﹣1x≥﹣4,解得:x≤1.故答案为:x≤1.【点睛】本题考查了解一元一次不等式,解题的关键是根据新定义列出关于x的不等式.13、900°【分析】由n边形的内角和是:180°(n-2),将n=7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7-2)=900°.

故答案为:900°.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n-2)是解此题的关键.14、1【分析】先根据作图过程可得AP为的角平分线,再根据角平分线的性质可得点D到AB的距离,然后根据三角形的面积公式即可得.【详解】由题意得:AP为的角平分线点D到AB的距离为4,即的边AB上的高为4则的面积是故答案为:1.【点睛】本题考查了角平分线的作图过程与性质,熟记角平分线的性质是解题关键.15、-2【分析】代数式的值为零,则分子为0,且代数有意义,求出x的值即可.【详解】代数式的值为零,则分子为0,及,解得,代数式有意义,则,解得:,则x=-2,故答案为-2.【点睛】本题是对代数式综合的考查,熟练掌握一元二次方程解法及二次根式知识是解决本题的关键.16、1.【详解】解:∵AB的垂直平分线交AB于D,∴AE=BE又△EBC的周长为21cm,即BE+CE+BC=21∴AE+CE+BC=21又AE+CE=AC=13cm所以BC=21-13=1cm.故答案为:1.考点:线段垂直平分线的性质.17、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【点睛】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.18、14.5【分析】如图,若设木棒AB长为x尺,则BC的长是(x-4)尺,而AC=1丈=10尺,然后根据勾股定理列出方程求解即可.【详解】解:如图所示,设木棒AB长为x尺,则木棒底端B离墙的距离即BC的长是(x-4)尺,在直角△ABC中,∵AC2+BC2=AB2,∴,解得:.故答案为:.【点睛】本题考查了勾股定理的应用,属于常考题型,正确理解题意、熟练掌握勾股定理是解题的关键.三、解答题(共66分)19、(1)a(x+1)(x﹣1);(2)﹣b(2a﹣b)2.【分析】(1)原式提取公因式,再利用平方差公式分解即可;

(2)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)ax2﹣9a=a(x2﹣9)=a(x+1)(x﹣1);(2)4ab2﹣4a2b﹣b1=﹣b(b2﹣4ab+4a2)=﹣b(2a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、,证明见解析【分析】根据题意证明△ABE≌△ACD即可求解.【详解】,证明如下:∵,∴AB-BD=AC-CE,即AD=AE,又∴△ABE≌△ACD(SAS)∴.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.21、(1)28,15;(2)108;(3)1.【解析】试题分析:(1)根据学校从三个年级随机抽取1名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据可以估计该校学生体育成绩不合格的人数.试题解析:(1)由题意和扇形统计图可得,a=1×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=1×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为108;(3)由题意可得,10×=1人,即该校三个年级共有10名学生参加考试,该校学生体育成绩不合格的有1人.考点:扇形统计图;用样本估计总体;统计与概率.22、(1)(2)(3)【分析】(1)仿照题目中给出的例子分解因式即可;(2)根据题目中的例子找到规律即可得出答案;(3)根据规律先给原式乘以,再除以即可得出答案.【详解】(1)根据题意有;(2)根据题中给出的规律可知,;(3)原式=.【点睛】本题主要考查规律探索,找到规律是解题的关键.23、【分析】原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到最简结果.【详解】===.【点睛】本题考查了分式的加减乘除混合运算,解题的关键是熟练运用分式的运算法则并正确分解因式.24、(1)(5,0);(2);(3)(2,4).【分析】(1)利用勾股定理求出OA的长即可解决问题;(2)利用待定系数法将点A、C的坐标代入一次函数表达式,求出k、b的值,再代回一次函数表达式中即可解决问题;(3)只要证明AB=AC=5,ABx轴,即可解决问题.【详解】解:(1)点A(﹣3,4),OA==5,又OA=OC,即OC=5,点C在x轴的正半轴上,点C(5,0),故答案为:(5,0);(2)设直线AC的表达式为y=kx+b,将点A、C的坐标代入一次函数表达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论